1 Parameter Table

1.1 Introduction

Groups P and A include standard function parameters. Group U includes the monitoring function parameters and extension card communication parameters.

The parameter description tables in this chapter use the following symbols. The symbols in the parameter table are described as follows:

Symbol	Meaning
•	It is possible to modify the parameter with the drive in the stop or in the Run
23	status.
\star	It is not possible to modify the parameter with the drive in the Run status.
	The parameter is the actual measured value and cannot be modified.
*	The parameter is a factory parameter and can be set only by the manufacturer.

1.2 Standard Parameters

Para. No.	Para. Name	Setting Range	Default	Property
Group PO: S	tandard Parameters			
P0-00	G/P type display	1 : G type 2: P type	1	•
P0-01	Motor 1 control mode	0: SVC control 2: V/F control	2 (If the torque is not enough, 0 is recommended)	*
P0-02	Command source selection	0: Operating panel (keypad & display) (LED off) 1: Terminal I/O control (LED on) 2: Serial Communication. (LED flashing)	0	Å
P0-03	Main frequency reference setting channel selection	Milliampere input It current 1-20		*
P0-04	Auxiliary frequency reference setting channel selection	0: digital setting (non-retentive at power down) 1: digital setting (retentive at power down) 2: VI 3: CI 4: KEY resistance range 5: Pulse reference 6: Multi-reference		*

		7: Simple PLC 8: PID reference		
		9: Serial Communication.		
P0-05	Base value of range of auxiliary frequency reference for Main and auxiliary calculation	0: Relative to maximum frequency 1: Relative to main frequency reference		\$
P0-06	Range of auxiliary frequency reference for main and auxiliary calculation	0% to 150%	100%	\$
P0-07	Final Frequency reference setting selection	00 to 34	00	\$
P0-08	Preset frequency	0.00 to max. frequency (P0-10)	50.00 Hz	☆
P0-09	Running direction	0: Run in default direction 1: Run in direction reverse to default direction	0	☆
P0-10	Max. frequency	50.00 to 500.00 Hz	50.00 Hz	*
P0-11	Setting channel of frequency upper limit	0: Set by P0-12 1: VI 2: CI 3: KEY resistance range 4: Pulse reference (X3) 5: Communication reference	0	*
P0-12	Frequency reference upper limit	P0-14 to P0-10	50.00 Hz	\$
P0-13	Frequency reference upper limit offset	0.00 Hz to max. frequency (PO-10)	0.00 Hz	☆
P0-14	Frequency reference lower limit	0.00 Hz to frequency upper limit (P0-12)	0.00 Hz	☆
P0-15	Carrier frequency	2.0 to 8.0 kHz	Model dependent	☆
P0-16	Carrier frequency adjusted with temperature	0: disabled 1: Enabled	1	\$
P0-17	Acceleration time 1	0.0s to 6500.0s (P0-19 = 1)	Model dependent	\$
P0-18	Deceleration time 1	0.0s to 6500.0s (P0-19 = 1)	Model dependent	\$

P0-23	Retentive of digital setting frequency upon stop	0: Not retentive 1: Retentive	1	\$
P0-26	Base frequency for UP/DOWN modification during running	0: Running frequency 1: Frequency Reference	1	*
P0-27	Command source + frequency source	<pre>Ui' ii Bnigoeain panel command to frequency source) 0: No binding 1 rqec oreb iia setting 2: VI 3: CI 4: KEY resistance range 5: Pulse setting (X3) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication setting Tnsdgt(idn emnl command to frequency source) 0-9, same as unit's digit Hnrdsdgt(idn communication command to frequency source) 0-9, same as unit's digit</pre>	000	*
P0-28	Serial port comms. protocol	0: Modbus protocol	0	*
Group P1: M	Motor 1 Parameters			
P1-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor	0	*
P1-01	Rated motor power	0.1 to 1000.0 kW	Model dependent	*
P1-02	Rated motor voltage	1 to 2000 V	Model dependent	*
P1-03	Rated motor current	0.01 to 655.35 A (AC drive power ≤ 55 kW) 0.1 to 6553.5 A (AC drive power > 55 kW)	Model dependent	*
P1-04	Rated motor frequency	0.01 Hz to max. frequency	Model dependent	*
P1-05	Rated motor speed	1 to 65535 rpm	Model dependent	*
P1-37	Motor auto-tuning method selection	0: No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning	0	*

P3-00	V/F curve setting	0: Linear V/F 1: Multi-point V/F 2: Square V/F 3: 1.2-power V/F 4: 1.4-power V/F 6: 1.6-power V/F 8: 1.8-power V/F 9: Reserved 10: V/F complete separation 11: V/F half separation	0	*
P3-01	Torque boost	0.0%: fixed boost 0.1% to 30%	Model dependent	\$
P3-02	Cut-off frequency of torque boost	0.00 Hz to max. frequency	50.00 Hz	*
P3-03	Multi-point V/F frequency 1	0.00 Hz to P3-05	0.00 Hz	*
P3-04	Multi-point V/F voltage	0.0% to 100.0%	0.0%	*
P3-05	Multi-point V/F frequency 2	F3-03 to F3-07	0.00 Hz	*
P3-06	Multi-point V/F voltage	0.0% to 100.0%	0.0%	*
P3-07	frequency 3	F3-05 to rated motor frequency (F1-04)	0.00 Hz	*
P3-08	Multi-point V/F voltage		0.0%	*
P3-10	V/F over-excitation gain	0 to 200	64	\$
P3-11	V/F oscillation suppression gain	0 to 100	40	☆

		0. No function		
		0: No function 1: Forward run (FWD)		
		2: Reverser run (REV)		
		3: Three-wire control		
		4: Forward jog (FJ0G)		
		5: Reverse jog (RJ0G)		
		6: Terminal UP		
		7: Terminal DOWN		
		8: Coast to stop		
		9:Fault reset (RESET)		
		10:RUN disabled		
		11:External fault NO input		
		12:Multi-reference terminal 1		
		13:Multi-reference terminal 2		
		14:Multi-reference terminal 3		
		15:Multi-reference terminal 4		
		16:Terminal 1 for acceleration		
		deceleration time selection		
		17:Terminal 2 for acceleration		
		deceleration time selection		
	FWD function	18:Frequency reference setting	1	
P4-00	selection	channel switchover	1	★
		19:UP and DOWN setting clear		
		(terminal, operation panel)		
		20:Command source switchover 1		
		21:Acceleration/Deceleration prohibited		
		22:PID disabled		
		23:PLC state reset		
		24:Wobble disabled		
		25:Counter input		
		26:Counter reset		
		27:Length signal pulses count		
		28:Length reset		
		29:Torque control prohibited		
		30:Pulse input as frequency		
		reference (valid only for X3) 31:Reserved		
		32:Immediate DC injection braking		
		33:External fault NC input		
		34:Frequency modification enabled		
		35:PID operation direction reverse		
		36:External stop 1		

Para. No.	Para. Name	Setting Range	Default	Property
P4-01	REV function selection	44: User-defined fault 1	2	*
P4-02	X1 function selection	45: User-defined fault 2 46: Speed control/ Torque control	9	*
P4-03	X2 function selection	47: Emergency stop (ES)	12	*
P4-04	X3 function selection	48: External stop 2	13	*
P4-05	X4 function selection	49: Deceleration DC injection braking	0	*
P4-06	X5 function selection	50: Clear running time this time	0	*
P4-07	X6 function selection	51: Two-wire control/ Three-wire	0	*
P4-08		control 52: Reverse running prohibited	0	*
P4-09		53 to 59: Reserved	0	*
P4-10	X filter time	0.000s to 1.000s	0.010s	\$
P4-11	Terminal control mode	0: Two-wire control mode 1 1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2	0	*
P4-12	Terminal UP/DOWN rate	0.001 to 65.535 Hz/s	1.000 Hz/s	
P4-13	VI min. input	0.00 V to P4-15	0.00 V	
P4-14	Corresponding percentage of VI min. input	-100.00% to 100.0%	0.0%	\$
P4-15	VI max. input	P4-13 to 10.00 V	10.00 V	\$
P4-16	Corresponding percentage of VI max. input	-100.00% to 100.0%	100. 0%	\$
P4-17	VI filter time	0.00s to 10.00s	0.10s	\$
P4-18	CI min. input	0.00 V to P4-20	0.00 V	\$
P4-19	Corresponding percentage of CI min. input	-100.00% to 100.0%	0.0%	\$
P4-20	CI max. input	P4-18 to 10.00 V	10.00 V	
P4-21	Corresponding percentage of CI max. input	-100.00% to 100.0%	100.0%	$\overset{1}{\sim}$
P4-22	CI filter time	0.00s to 10.00s	0.10s	\$
P4-35	FWD delay	0.0s to 3600.0s	0.0s	
P4-36	REV delay	0.0s to 3600.0s	0.0s	*
P4-37	X1 delay	0.0s to 3600.0s	0.0s	*
Group P5: Ou	itput Terminals			

P5-01		<pre>0: No output 1: AC drive running 2: Fault output 3: Frequency level detection 1 output 4: Frequency reached 5: Zero-speed running (no output at stop) 6: Motor overload pending 7: AC drive overload pending 8: Set count value reached 9: Designated count value reached</pre>	0	*
P5-02	Relay1 (A-B-C) function selection	10: Length reached11: PLC cycle completed12: Accumulative running time	2	\$
P5-03		18: Frequency lower limit reached (no output at stop) 19: Undervoltage 20: Communication setting 21, 22: Reserved 23: Zero-speed running 2 (having output at stop) 24: Accumulative power-on time reached 25: Frequency level detection 2 26: Frequency 1 reached	0	\$
P5-04	Relay2 (A1-B1-C1) function selection	 27: Frequency 2 reached 28: Current 1 reached 29: Current 2 reached 30: Timing reached 31: VI input exceeding limit 32: Load lost 33: Reverse running 34: Zero current 35: IGBT temperature reached 36: Output current exceeding limit 	1	\$
P5-05		 37: Frequency lower limit reached (having output at stop) 38: Alarm output 39: Motor overheat pending 40: Current running time reached 41: Fault output 	4	\$

·				
P5-06		 Running frequency Frequency reference Output current Output torque (absolute value) Output power Output voltage 	0	*
P5-07	AM function selection	6: Pulse input 7: VI 8: CI 9: KEY 10: Length 11: Counting value	0	X
P5-08	FM function selection	 11: Counting value 12: Communication reference 13: Motor speed 14: Output current 15: Output voltage 16: Output torque of the motor (actual value, a percentage of the rated motor torque) 	1	*
P5-10	AM zero offset coefficient	-100.0% to 100.0%	0.0%	云
P5-11	AM gain	-10.00 to 10.00	1.00	*
P5-12	FM zero offset coefficient	-100.0% to 100.0%	0.00%	\$
P5-13	FM gain	-10.00 to 10.00	1.00	☆
P5-18	Relay1(A-B-C)output	0.0s to 3600.0s	0.0s	☆
P5-19	Relay2(A1-B1-C1) output	0.0s to 3600.0s	0.0s	☆
Para. No.	Para. Name	Setting Range	Default	Property
Group P6: Sta	rt/Stop Control			

P6-10	Stop mode	0: Decelerate to stop 1: Coast to stop	0	\$
P6-15	Braking use ratio	0% to 100%	100%	
Group P7: Key	vpad Operation and LED d			
P7-00	LED default display check		0	\$
P7-01	MF.K key function selection	0 to 4	0	*
P7-02	STOP/RESET key function	0: Available for just operation panel control 1: Available always	1	\$
P7-03	parameters	0000 to FFFF	1F	\$
P7-04	LED display running parameters 2	0000 to FFFF	0	\$
P7-05	LED display stop parameters	0000 to FFFF	33	
P7-06	Load speed display coefficient	0.0001 to 6.5000	1.0000	
P7-07	Heatsink temperature of IGBT	-20° C to 120° C	_	•

P7-08	Product series	-	_	•
P7-09	Accumulative running time	0 to 65535 h	-	•
P7-10	Performance software version	-	-	•
P7-11	Function software version	_	_	•
P7-12	Number of decimal places for load speed display	10 to 23	21	☆
P7-13	Accumulative power-on time	0 to 65535 h	-	•
P7-14	Accumulative power consumption	0 to 65535 kWh	_	•
Group P8: Au	xiliary Functions			
P8-00	Jog frequency reference	0.00 Hz to max. frequency	2.00 Hz	${\swarrow}$
P8-01	Jog acceleration time	0.0s to 6500.0s	20.0s	\$
P8-02	Jog deceleration time	0.0s to 6500.0s	20.0s	\$
P8-12	Forward/Reverse run switchover dead- zone time	0.0s to 3000.0s	0.0s	Å
P8-13	Reverse RUN selection	0: disabled 1: Enabled	0	
P8-14	Running mode when frequency reference lower than frequency lower limit	0: Running at lower limit speed	0	\$
P8-16	Accumulative power-on time threshold	0 to 65000 n	0 h	\$
P8-17	Accumulative running time threshold	0 to 65000 h	0 h	\$
P8-18	Startup protection selection	0: disabled 1: Enabled	0	${\leftrightarrow}$
P8-27	Set highest priority to terminal JOG function		0	${\leftrightarrow}$
P8-47	IGBT temperature threshold	0° C to 100° C	75° C	\$
P8-48	Cooling fan working mode	0: Working during drive running 1: Working continuously	0	
P8-49	Wakeup frequency	P8-51 to max. frequency (P0-10)	0.00 Hz	\overleftrightarrow
P8-50	Wakeup delay time	0.0s to 6500.0s	0.0s	☆
P8-51	Hibernating frequency	0.00 Hz to wakeup frequency (P8-49)	0.00 Hz	\$

P8-52	Hibernating delay time	0.0s to 6500.0s	0.0s	
P8-53	Running time threshold this time	0.0 to 6500.0 min	0.0 min	${\swarrow}$
up P9: Fa	ult and Protection		I	
-	Motor overload	0: disabled	_	
P9-00	protection	1: Enabled	1	$\stackrel{\frown}{\simeq}$
DO 01	Motor overload		1 00	٨
P9-01	protection gain	0.20 to 10.00	1.00	
P9-02	Motor overload		0.00/	_A_
P9-02	pre-warning coefficient	50% to 100%	80%	\$
P9-03	Overvoltage protection		0	
P9-03	gain	0 (no overvoltage stall) to 100	0	X
P9-04	Overvoltage protection		130%	
19 04	voltage	120% to 150%	130%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
P9-05	Current limit gain	0 to 100	20	\$
P9-06	Current limit level	50% to 200%	150%	*
	Selection of detecting			
P9-07	short-circuit to	00 to 11	01	$\stackrel{\wedge}{\simeq}$
	ground			
P9-09	Auto reset times	0 to 20		$\overset{\wedge}{\sim}$
P9-10	Selection of DO action	0: Not act		
	during auto reset	1: Act		
P9-11	Delay of auto reset	0.1s to 100.0s	1.0s	${\simeq}$
	Input phase			
P9-12	loss/pre-charge relay	00 to 11		\overleftrightarrow
	protectio			
P9-13	Output phase loss	00 to 11	01	
	protection			
P9-14	1st fault type	0 to 55		•
P9-15	2nd fault type	0 to 55		•
P9-16	3rd (latest) fault	0 to 55		•
	type			
P9-17	Frequency upon 3rd	_		•
DO 10	fault			-
P9-18	Current upon 3rd fault	—		•
P9-19	Bus voltage upon 3rd	_		•
DO 00	fault			•
P9-20	X state upon 3rd fault			
P9-21	DO state upon 3rd fault	_		
P9-22	AC drive state upon 3rd	1		
19-22	fault	_		—
P9-23	Power-on time upon 3rd			
19-23	fault	_		—
P9-24	Running time upon 3rd			
13 44	fault	_		•

1.2 Parameter Table

Para. No.	Para. Name	Setting Range	Default	Property
Group FA: PID				
	PID reference setting channel	0 to 6	0	\overleftrightarrow
PA-01	PID digital setting	0.0% to 100.0%	50.0%	☆

PA-02	PID feedback setting channel	0 to 8	0	\$
PA-03	PID operation direction	0, 1	0	\$
PA-04	PID reference and feedback range	0 to 65535	1000	☆
PA-05	Proportional gain Kpl	0.0 to 1000.0	20.0	\$
PA-06	Integral time Til	0.01s to 10.00s	0.00s	\$
PA-07	differential time Td1	0.000s to 10.000s	0.000s	\$
PA-08	PID output limit in reverse direction	0.00 Hz to max. frequency	0.00 Hz	*
PA-09	PID error limit	0.0% to 100.0%	0.0%	Δ
PA-10	PID differential limit	0.00% to 100.00%	0.10%	☆
PA-11	PID reference change time	0.00s to 650.00s	0.00s	☆

-	ulti-Reference and Simple		0.00/	٨
PC-00	Reference 0	-100.0% to 100.0%	0.0%	<u>क्र</u>
PC-01	Reference 1	-100.0% to 100.0%	0.0%	\$
PC-02	Reference 2	-100.0% to 100.0%	0.0%	☆
PC-03	Reference 3	-100.0% to 100.0%	0.0%	\Rightarrow
PC-04	Reference 4	-100.0% to 100.0%	0.0%	\$
PC-05	Reference 5	-100.0% to 100.0%	0.0%	☆
PC-06	Reference 6	-100.0% to 100.0%	0.0%	\$
PC-07	Reference 7	-100.0% to 100.0%	0.0%	
PC-08	Reference 8	-100.0% to 100.0%	0.0%	\overrightarrow{x}
PC-09	Reference 9	-100.0% to 100.0%	0.0%	\$
PC-10	Reference 10	-100.0% to 100.0%	0.0%	☆
PC-11	Reference 11	-100.0% to 100.0%	0.0%	\$
PC-12	Reference 12	-100.0% to 100.0%	0.0%	\$
PC-13	Reference 13	-100.0% to 100.0%	0.0%	\$
PC-14	Reference 14	-100.0% to 100.0%	0.0%	\$
PC-15	Reference 15	-100.0% to 100.0%	0.0%	\$
PC-16	Simple PLC running mode	0: Stop after running one cycle 1: Keep final values after running one cycle 2: Repeat after running one cycle	0	\$
PC-17	Simple PLC retentive selection	00 to 11	00	☆
PC-18	Running time of simple PLC reference 0	0.0s (h) to 6553.5s (h)	0.0s (h)	\$
PC-19	Acceleration/decelerat ion time of simple PLC reference 0	0 to 3	0	☆
PC-20	Running time of simple PLC reference 1	0.0s (h) to 6553.5s (h)	0.0s (h)	☆
PC-21	Acceleration/decelerat ion time of simple PLC reference 1	0 to 3	0	
PC-22	Running time of simple PLC reference 2	0.0s (h) to 6553.5s (h)	0.0s (h)	\$

	Acceleration/decelerat			
PC-23	ion time of simple	0 to 3	0	Δ
10 20	PLC reference 2			
DQ 04	Running time of simple			٨
PC-24	PLC reference 3	0.0s (h) to 6553.5s (h)	0.0s (h)	Δ
	Acceleration/decelerat			
PC-25	ion time of simple	0 to 3	0	
	PLC reference 3			
PC-26	Running time of simple	0.0s (h) to 6553.5s (h)	0.0s (h)	$\overset{\wedge}{\searrow}$
	PLC reference 4			
DC 97	Acceleration/decelerat		0	٨
PC-27	ion time of simple PLC reference 4	0 to 3	0	
	Running time of simple			
PC-28	PLC reference 5	0.0s (h) to 6553.5s (h)	0.0s (h)	\overleftrightarrow
	Acceleration/decelerat			
PC-29	ion time of simple	0 to 3	0	
	PLC reference 5			
PC-30	Running time of simple	0.0s (h) to 6553.5s (h)	0.0s (h)	
FC-30	PLC reference 6		0.08 (11)	X
	Acceleration/decelerat			
PC-31	ion time of simple	0 to 3	0	
	PLC reference 6			
PC-32	Running time of simple	0.0s (h) to 6553.5s (h)	0.0s (h)	
	PLC reference 7 Acceleration/decelerat			
PC-33	ion time of simple	0 to 3	0	
10 00	PLC reference 7			
D Q 04	Running time of simple			<u>^</u>
PC-34	PLC reference 8	0.0s (h) to 6553.5s (h)	0.0s (h)	\$
	Acceleration/decelerat			
PC-35	ion time of simple	0 to 3	0	$\stackrel{\sim}{\sim}$
	PLC reference 8			
PC-36	Running time of simple	0.0s (h) to 6553.5s (h)	0.0s (h)	\mathbf{x}
	PLC reference 9			
DC 97	Acceleration/decelerat		0	
PC-37	ion time of simple PLC reference 9	0 to 3	0	\$
	Running time of simple			
PC-38	PLC reference 10	0.0s (h) to 6553.5s (h)	0.0s (h)	\$
	Acceleration/decelerat			
PC-39	ion time of simple	0 to 3	0	☆
	PLC reference 10			
DC 40	Running time of simple	0.0a (b) to 6552 Eq. (b)	0.0a (b)	_^_
PC-40	PLC reference 11	0.0s (h) to 6553.5s (h)	0.0s (h)	\$
	Acceleration/decelerat			
PC-41	ion time of simple	0 to 3	0	\$
	PLC reference 11			
PC-42	Running time of simple	0.0s (h) to 6553.5s (h)	0.0s (h)	$\overset{\wedge}{\sim}$
	PLC reference 12			
PC-43	Acceleration/decelerat ion time of simple	0 to 3	0	
10 40	PLC reference 12		U U	~
	ILC TETETENCE 12		1	

PC-44	Running time of simple PLC reference 13	0.0s (h) to 6553.5s (h)	0.0s (h)	
PC-45	Acceleration/decelerat ion time of simple PLC reference 13	0 to 3	0	*
PC-46	Running time of simple PLC reference 14	0.0s (h) to 6553.5s (h)	0.0s (h)	*
PC-47	Acceleration/decelerat ion time of simple PLC reference 14	0 to 3	0	*
PC-48	Running time of simple PLC reference 15	0.0s (h) to 6553.5s (h)	0.0s (h)	Δ
PC-49	Acceleration/decelerat ion time of simple PLC reference 15	0 to 3	0	\$
PC-50	Time unit of simple PLC running	0: s 1: h	0	\$
PC-51	Reference O source	0: Set by PC-00 1: VI 2: CI 3: KEY resistance range 4: Pulse reference(X3) 5: PID reference 6: Set through UP/DOWN key/function based on preset frequency (P0-08)	0	$\overrightarrow{\mathbf{x}}$

Para. No.	Para. Name	Setting Range	Default	Property
Group Pd: Co	mmunication			
Pd-00	Baud rate	0000 to 6039	5005	\overleftrightarrow
Pd-01	Data format symbol	0 to 3	0	Σ
Pd-02	Local address	0: Broadcast address; 1 to 247	1	Δ
Pd-03	Response delay	0 to 20 ms	2	
Pd-04	Communication timeout	0.0: invalid 0.1s to 60.0s	0.0s	\mathbf{k}
Pd-05	Modbus protocol selection and PROFIBUS-DP data frame	00 to 31	31	47
Pd-06	Current resolution read by communication	0: 0.01A 1: 0.1A	0	
Para. No.	Para. Name	Setting Range	Default	Property
PP-00	User password	0 to 65535	0	X
PP-01	Parameter initialization	00: No operation 01: Restore factory parameters except motor parameters 02: Clear records	0	*

Group A5: Con	Group A5: Control Optimization					
A5-00	DPWM switchover frequency upper limit	0.00 Hz to 15.00Hz	12.00 Hz	\$		
A5-01	PWM modulation pattern	0, 1	0	\$		
A5-02	Dead zone compensation mode selection	0, 1	1	\$		
A5-03	Random PWM depth	0 to 10	0			
A5-04	Overcurrent fast prevention	0, 1	1	\$		
A5-06	Undervoltage threshold	60% to 140%	100.0%	$\overset{1}{\sim}$		
A5-08	Dead-zone time adjustment	100% to 200%	150%	*		

2 Description of Function Codes

Group PO: Basic Parameters

Function Code	Parameter Name	Setting Range	Default
		1: G type (constant torque load)	Model
PO-00 G/P type Display	G/P type Display	2: P type (variable torque load e.g.	donandant
		fan and pump)	dependent

This parameter is used to Display the delivered model and cannot be modified

* 1: Applicable to constant torque load with rated parameters specified

* 2: Applicable to variable torque load (fan and pump) with rated parameters specified

Function Code	Parameter Name	Setting Range	Default
		0: Sensorless flux vector control (SFVC)	
P0-01	H-01 Motor 1 control mode	1: Closed-loop vector control (CLVC)	0
		2: Voltage/Frequency (V/F) control	

* 0: Sensorless flux vector control (SFVC)

It indicates open-loop vector control, and is applicable to high-performance control applications such as machine tool, centrifuge, wire drawing machine and injection moulding machine. One AC drive can operate only one motor.

* 1: Closed-loop vector control (CLVC)

It is applicable to high-accuracy speed control or torque control applications such as high-speed paper making machine, crane and elevator. One AC drive can operate onl one motor. An encoder must be installed at the motor side, and a PG card matching the encoder must be installed at the AC drive side.

* 2: Voltage/Frequency (V/F) control

It is applicable to applications with low load requirements or applications where one AC drive operates multiple motors, such as fan and pump.

If vector control is used, motor auto-tuning must be performed because the advantages of vector control can only be utilized after correct motor parameters are obtained. Better performance can be achieved by adjusting speed regulator parameters in group P2 .

Function Code Parameter Name Setting Range Default
--

		0: Operation panel control (LED off)	
P0-02 Command source selection	Command acurac coloction	1: Terminal control (LED on)	0
	2: Communication control (LED	0	
		blinking)	

It is used to determine the input channel of the AC drive control commands, such as run, stop, forward rotation, reverse rotation and jog operation. You can input the commands in the following three channels:

* 0: Operation panel control ("LOCAL/REMOT" indicator off) Commands are given by pressing keys 'RUN' and 'STOP' on the operation panel.

* 1: Terminal control ("LOCAL/REMOT" indicator on) Commands are given by means of multifunctional input terminals with functions such as FWD, REV, JOGF, and JOGR.

```
* 2: Communication control ("LOCAL/REMOT" indicator blinking)
```

Commands are given from host computer. If this parameter is set to 2, a communication card (Modbus RTU card) must be installed. Note:

If any other card is selected, commands are written by means of the communication address 0x2000.

Function Code	Parameter Name	Setting Range	Default	
		0: digital setting (non-retentive at		
		power failure)		
		1: digital setting (retentive at		
		power failure)		
		2: VI		
D0 02	Main frequency source di	3: CI	0	
P0-03	selection	4: KEY	0	
		5: Pulse setting (X3)		
		6: Multi-reference		
			7: Simple PLC	
		8: PID		
		9: Communication setting		

It is used to select the setting channel of the main frequency. You can set the main frequency in the following 10 channels:

* 0: digital setting (non-retentive at power failure)
 The initial value of the set frequency is the value of F0-08 (Preset frequency).

You can change the set frequency by pressing \bigtriangleup and \bigtriangledown on the operation panel

(or using the UP/DOWN function of input terminals).

When the AC drive is powered on again after power failure, the set frequency reverts to the value of F0-08.

* 1: digital setting (retentive at power failure)

The initial value of the set frequency is the value of FO-08 (Preset frequency)

You can change the set frequency by pressing keys riangle and riangle on the operation

panel (or using the UP/DOWN function of input terminals).

When the AC drive is powered on again after power failure, the set frequency is the value memorized at the moment of the last power failure.

Note that PO-23 (Retentive of digital setting frequency upon power failure) determines whether the set frequency is memorized or cleared when the AC drive stops. It is related to stop rather than power failure.

* 2: VI (0 - 10 V voltage input)

* 3: CI (0-10 V voltage input or 4-20 mA current input, determined by jumper J8)

* 4:KEY

The frequency is set by analog input. The KC500 control board provides two analog input (AI) terminals (VI, CI). Another AI terminal (KEY) is provided by the I/0 extension card.

The KC500 provides five curves indicating the mapping relationship between the input voltage of VI, CI and KEY and the target frequency, three of which are linear (point-point) correspondence and two of which are four-point correspondence curves. You can set the curves by using function codes F4-13 to P4-27 and function codes in group A6, and select curves for VI, CI and KEY resistance range in P4-33.

When AI is used as the frequency setting source, the corresponding value 100% of the voltage/current input corresponds to the value of PO-10 (Maximum frequency).

* 5: Pulse setting (X3)

The frequency is set by X3 (high-speed pulse). The signal specification of pulse setting is 9-30 V (voltage range) and 0-100 kHz (frequency range). The corresponding value 100% of pulse setting corresponds to the value of PO-10 (Maximum frequency).

* 6: Multi-reference

In multi-reference mode, combinations of different X terminal states correspond to Different set frequencies. The KC500 supports a maximum of 16 speeds implemented by 16 state combinations of four X terminals (allocated with functions 12 to 15) in Group PC. The multiple references indicate percentages of the value of PO-10 (Maximum frequency). If a X terminal is used for the multi-reference function, you need to perform related setting in group P4.

* 7: Simple PLC

When the simple programmable logic controller (PLC) mode is used as the frequency source, the running frequency of the AC drive can be switched over among the 16 frequency references. You can set the holding time and acceleration/deceleration time of the 16 frequency references. For details, refer to the descriptions of Group PC. * 8: PID

The output of PID control is used as the running frequency. PID control is generally used in on-site closed-loop control, such as constant pressure closed-loop

control and constant tension closed-loop control. When applying PID as the frequency source, you need to set parameters of PID function in group PA.

* 9: Communication setting

The frequency is set by means of communication. If the AC drive is a slave in point-point communication and receives data as the frequency source, data transmitted by the master is used as the set frequency. For details, see the description of group A8.

In other conditions, data is given by the host computer through the communication address 0x1000. The data format is -100.00% to 100.00%. 100.00% corresponds to the value of PO-10 (Maximum frequency).

Function Code	Parameter Name	Setting Range	Default
		0: digital setting (non-retentive at	
		power failure)	
		1: digital setting (retentive at	
		power failure)	
		2: VI	
D0 04	Auxiliary frequency	3: CI	0
P0-04	source Y selection	4: KEY	0
		5: Pulse setting (X3)	
		6: Multi-reference	
		7: Simple PLC	
		8: PID	
		9: Communication setting	

The KC500 supports four host computer communication protocols: Modbus

When used as an independent frequency input channel (frequency source switched over from X to Y), the auxiliary frequency source Y is used in the same way as the main frequency source X (refer to PO-O3).

When the auxiliary frequency source is used for operation (frequency source is "di and Y operation"), pay attention to the following aspects:

1) If the auxiliary frequency source Y is digital setting, the preset frequency (PO-08) does not take effect. You can directly adjust the set main frequency by

pressing keys \bigtriangleup and \bigtriangledown on the operation panel (or using the UP/DOWN function of input terminals).

2) If the auxiliary frequency source is analog input (VI, CI and KEY) or pulse setting, 100% of the input corresponds to the range of the auxiliary frequency Y (set in PO-05 and PO-06).

3) If the auxiliary frequency source is pulse setting, it is similar to analog input. Note:

The main frequency source X and auxiliary frequency source Y must not use the same channel. That is, PO-O3 and PO-O4 cannot be set to the same value.

Function Code	Parameter Name	Setting Range	Default
	Range of auxiliary	0: Relative to maximum frequency	
P0-05	frequency Y for X and Y operation	1: Relative to main frequency X	0
P0-06	Range of auxiliary frequency Y for X and Y operation	0% - 150%	0

If X and Y operation is used, PO-05 and PO-06 are used to set the adjustment range of the auxiliary frequency source.

You can set the auxiliary frequency to be relative to either maximum frequency or main frequency X. If relative to main frequency X, the setting range of the auxiliary frequency Y varies according to the main frequency X.

Function Code	Parameter Name	Setting Range	Default
		Unit's digit (Frequency source	
		selection)	
		0: Main frequency source X	
		1: X and Y operation ((operation	
		relationship determined by ten's	
		digit)	
		2: Switchover between X and Y	0
	D	3: Switchover between X and "X and Y	
P0-07	Frequency source selection	operation"	
		4: Switchover between Y and "X and Y	
		operation"	
		Ten's digit (X and Y operation	
		relationship)	
		0: X+Y	
		1: X-Y	
		2: Maximum	
		3: Minimum	

It is used to select the frequency setting channel. If the frequency source involves X and Y operation, you can set the frequency offset in PO-21 for superposition to the X and Y operation result, flexibly satisfying various requirements.

Figure 6-1 Frequency setting based on main frequency source X and auxiliary frequency source Y.

Function Code	Parameter Name	Setting Range	Default
P0-08	Preset frequency	0.00 to maximum frequency (valid when frequency source is digital setting)	50HZ

If the frequency source is digital setting or terminal UP/DOWN, the value of this parameter is the initial frequency of the AC drive (digital setting).

Function Code	Parameter Name	Setting Range	Default
P0-09	Rotation direction	0: Same direction	0

1: Reverse direction

You can change the rotation direction of the motor just by modifying this parameter without changing the motor wiring. Modifying this parameter is equivalent to exchanging any two of the motor's U, V, W wires.

Note:

The motor will resume running in the original direction after parameter initialization. Do not use this function in applications where changing the rotating direction of the motor is prohibited after system commissioning is complete.

Function Code	Parameter Name	Setting Range	Default
P0-10	Maximum frequency	50.00 - 320.00 Hz	50HZ

When the frequency source is AI, pulse setting (X3), or multi-reference, 100% of the input corresponds to the value of this parameter.

The output frequency of the KC500 can reach up to 3200 Hz. To take both frequency reference resolution and frequency input range into consideration, you can set the number of decimal places for frequency reference in PO-22.

If P0-22 is set to 1, the frequency reference resolution is 0.1 Hz. In this case, the setting range of P0-10 is 50.0 to 3200.0 Hz.

If PO-22 is set to 2, the frequency reference resolution is 0.01 Hz. In this case, the setting range of PO-10 is 50.00 to 320.00 Hz.

Note:

After the value of PO-22 is modified, the frequency resolution of all frequency related function codes change accordingly.

Function Code	Parameter Name	Setting Range	Default
		0: Set by F0-12	
		1: VI	
P0-11	Source of frequency upper	2: CI	0
P0-11	limit	3: KEY	
		4: Pulse setting (X3)	
		5: Communication setting	

It is used to set the source of the frequency upper limit, including digital setting (PO-12), AI, pulse setting or communication setting. If the frequency upper limit is set by means of VI, CI, KEY, X3 or communication, the setting is similar to that of the main frequency source X. For details, see the description of PO-03.

For example, to avoid runaway in torque control mode in winding application, you can set the frequency upper limit by means of analog input. When the AC drive reaches the upper limit, it will continue to run at this speed.

Function Code	Parameter Name	Setting Range	Default	
P0-12	Frequency upper limit	Frequency lower limit (FO-14) to	50.00HZ	
F0-12	Frequency upper limit	maximum frequency (PO-10)	50. 00nZ	
This parameter is used to set the frequency upper limit.				
Function Code	Parameter Name	Setting Range	Default	
P0-13	Frequency upper limit	0.00 Hz to maximum frequency (PO-10)	0.00HZ	

offset		
--------	--	--

If the source of the frequency upper limit is analog input or pulse setting, the final frequency upper limit is obtained by adding the offset in this parameter to the frequency upper limit set in PO-11.

Function Code	Parameter Name	Setting Range	Default
P0-14	Frequency lower limit	0.00 Hz to frequency upper limit	0.00HZ
10 14	Trequency rower rimit	(P0-12)	0.00112

If the frequency reference is lower than the value of this parameter, the AC drive can stop, run at the frequency lower limit, or run at zero speed, determined by P8-14.

Function Code	Parameter Name	Setting Range	Default
P0-15	Carrier frequency	0.5 - 16.0 kHz	Model dependent

It is used to adjust the carrier frequency of the AC drive, helping to reduce the motor noise, avoiding the resonance of the mechanical system, and reducing the leakage current to the earth and interference generated by the AC drive.

If the carrier frequency is low, output current has high harmonics, and the power loss and temperature rise of the motor increase.

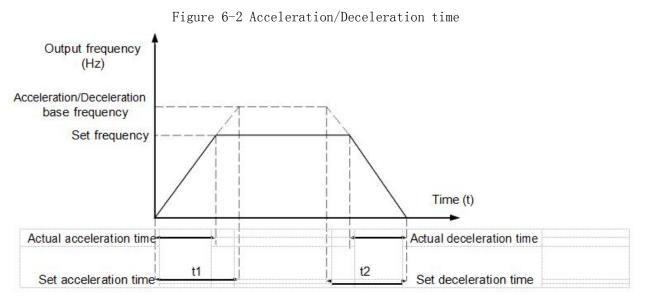
If the carrier frequency is high, power loss and temperature rise of the motor declines. However, the AC drive has an increase in power loss, temperature rise and interference.

Adjusting the carrier frequency will exert influences on the aspects listed in the following table.

Table 01 Influences of califier frequency adjustment				
Carrier frequency	Low	High		
Motor noise	Large	Small		
Output current waveform	Bad	Good		
Motor temperature rise	High	Low		
AC drive temperature rise	Low	High		
Leakage current	Small	Large		
External radiation	Small	Longo		
interference	Sillall	Large		

Table 6-1 Influences of carrier frequency adjustment

The factory setting of carrier frequency varies with the AC drive power. If you need to modify the carrier frequency, note that if the set carrier frequency is higher than factory setting, it will lead to an increase in temperature rise of the AC drive's heatsink. In this case, you need to de-rate the AC drive. Otherwise, the AC drive may overheat and alarm.


Function Code	Parameter Name	Setting Range	Default
P0-16	Carrier frequency adjustment	0: No	1
F0-10	with temperature	1: Yes	1

It is used to set whether the carrier frequency is adjusted based on the temperature. The AC drive automatically reduces the carrier frequency when detecting that the heatsink temperature is high. The AC drive resumes the carrier frequency to the set value when the heatsink temperature becomes normal. This function reduces the overheat alarms.

Function Code	Parameter Name	Setting Range	Default
PO-17 Acceleration time 1	0.00 - 650.00s (P0-19 = 2)	Model	
	0.0-6500.0s (P0-19 = 1)		
		0-65000s (P0-19 = 0)	- dependent
PO-18 Deceleration time 1	0.00-650.00s (P0-19 = 2)	Model	
	Deceleration time 1	0.0-6500.0s (P0-19 = 1)	den en den (
		0 - 65000s (P0-19 = 0)	dependent

Acceleration time indicates the time required by the AC drive to accelerate from 0 Hz to "Acceleration/Deceleration base frequency" (PO-25), that is, t1 in Figure 6-2.

Deceleration time indicates the time required by the AC drive to decelerate from "Acceleration/Deceleration base frequency" (PO-25) to 0 Hz, that is, t2 in Figure 6-2.

The KC500 provides totally four groups of acceleration/deceleration time for selection. You can perform switchover by using a X terminal.

Group 1: P0-17, P0-18 Group 2: P8-03, P8-04 Group 3: P8-05, P8-06 Group 4: P8-07, P8-08

Function Code	Parameter N	ame	Setting Range	Default
P0-28	Serial	communication	0: Modbus protocol	0
F0-28	protocol		0. Moubus protocor	0

The KC500 supports Modbus

Group P1: Motor 1 Parameters

Function Code	Parameter Name	Setting Range	Default
---------------	----------------	---------------	---------

		0: Common asynchronous motor	
P1-00	Motor type selection	1: Variable frequency asynchronous	0
		motor	
P1-01	Rated motor power	0.1 - 1000.0 kW	Model dependent
P1-02	Rated motor voltage	1 - 2000 V	Model dependent
		0.01 - 655.35 A(AC drive power	
P1-03	Rated motor current	<=55kW)	Model dependent
		0. 1 - 6553. 5 A (AC drive power $>55kW$)	
P1-04	Rated motor frequency	0.01 Hz to maximum frequency	Model dependent
P1-05	Rated motor rotational speed	1 - 65535 RPM	Model dependent

Set the parameters according to the motor nameplate no matter whether V/F control or vector control is adopted.

To achieve better V/F or vector control performance, motor auto-tuning is required. The motor auto-tuning accuracy depends on the correct setting of motor nameplate parameters.

Function Code	Parameter Name	Setting Range	Default
P1-37	Auto-tuning selection	0: No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning	0

* 0: No auto-tuning

Auto-tuning is prohibited.

* 1: Asynchronous motor static auto-tuning

It is applicable to scenarios where complete auto-tuning cannot be performed because the asynchronous motor cannot be disconnected from the load.

Before performing static auto-tuning, properly set the motor type and motor nameplate parameters of P1-00 to P1-05 first. The AC drive will obtain parameters of P1-06 to P1-08 by static auto-tuning.

Set this parameter to 1, and press RUN. Then, the AC drive starts static auto-tuning.

* 2: Asynchronous motor complete auto-tuning

To perform this type of auto-tuning, ensure that the motor is disconnected from the load.

During the process of complete auto-tuning, the AC drive performs static auto-tuning first and then accelerates to 80% of the rated motor frequency within the acceleration time set in PO-17. The AC drive keeps running for a certain period and then decelerates to stop within deceleration time set in PO-18.

Before performing complete auto-tuning, properly set the motor type, motor nameplate parameters of P1-00 to P1-05. Group P3: V/F Control Parameters Group P3 is valid only for V/F control.

The V/F control mode is applicable to low load applications (fan or pump) or applications where one AC drive operates multiple motors or there is a large difference between the AC drive power and the motor power.

Function Code	Parameter Name	Setting Range	Default
		0: Linear V/F	
		1: Multi-point V/F	
		2: Square V/F	
	3: 1.2-power V/F		
	V/E autor satting	4: 1.4-power V/F	- 0
P3-00	V/F curve setting	6: 1.6-power V/F	
	8: 1.8-power V/F	-	
	9: Reserved		
		10: V/F complete separation	
		11: V/F half separation	

* 0: Linear V/F

It is applicable to common constant torque load.

* 1: Multi-point V/F

It is applicable to special load such as dehydrator and centrifuge. Any such V/F curve can be obtained by setting parameters of P3-03 to P3-08.

* 2: Square V/F

It is applicable to centrifugal loads such as fan and pump.

* 3 to 8: V/F curve between linear V/F and square V/F

* 10: V/F complete separation

In this mode, the output frequency and output voltage of the AC drive are independent.

The output frequency is determined by the frequency source, and the output voltage is determined by "Voltage source for V/F separation" (P3-13).

It is applicable to induction heating, inverse power supply and torque motor control.

* 11: V/F half separation

In this mode, V and F are proportional and the proportional relationship can be set in P3-13. The relationship between V and F are also related to the rated motor voltage and rated motor frequency in Group P1.

Assume that the voltage source input is X (0 to 100%), the relationship between V and F is:

V/F = 2 x di x (Rated motor voltage)/(Rated motor frequency)

Function Code	Parameter Name	Setting Range	Default
P3-01	Torque boost	0.0% - 30%	Model dependent
P3-02	Cut-off frequency of torque boost	0.00 Hz to maximum output frequency	50.00 Hz

To compensate the low frequency torque characteristics of V/F control, you can boost the output voltage of the AC drive at low frequency by modifying P3-01.

If the torque boost is set to too large, the motor may overheat, and the AC drive may suffer overcurrent.

If the load is large and the motor startup torque is insufficient, increase the value of P3-01.

If the load is small, decrease the value of P3-01. If it is set to 0.0, the AC drive performs automatic torque boost. In this case, the AC drive automatically calculates the torque boost value based on motor parameters including the stator resistance.

P3-02 specifies the frequency under which torque boost is valid. Torque boost becomes invalid when this frequency is exceeded, as shown in the following figure. Figure 6-4 Manual torque boost

Function Code	Parameter Name	Setting Range	Default
P3-09	V/F slip compensation gain	0% - 200.0%	0.0%

This parameter is valid only for the asynchronous motor.

It can compensate the rotational speed slip of the asynchronous motor when the load of the motor increases, stabilizing the motor speed in case of load change. If this parameter is set to 100%, it indicates that the compensation when the motor bears rated load is the rated motor slip. The rated motor slip is automatically obtained by the AC drive through calculation based on the rated motor frequency and rated motor rotational speed in group P1.

Generally, if the motor rotational speed is different from the target speed, slightly adjust this parameter.

Function Code	Parameter Name	Setting Range	Default
P3-10	V/F over-excitation gain	0 - 200	64

During deceleration of the AC drive, over- excitation can restrain rise of the bus voltage, preventing the overvoltage fault. The larger the over-excitation is, the better the restraining result is.

Increase the over-excitation gain if the AC drive is liable to overvoltage error during deceleration. However, too large over-excitation gain may lead to an increase in the output current. Set P3-09 to a proper value in actual applications.

Set the over-excitation gain to 0 in the applications where the inertia is small and the bus voltage will not rise during motor deceleration or where there is a braking resistor.

Function Code	Parameter Name	Setting Range	Default
P3-11	V/F oscillation suppression gai	0 - 100	Model dependent

Set this parameter to a value as small as possible in the prerequisite of efficient oscillation suppression to avoid influence on V/F control.

Set this parameter to 0 if the motor has no oscillation. Increase the value properly only when the motor has obvious oscillation. The larger the value is, the better the oscillation suppression result will be.

When the oscillation suppression function is enabled, the rated motor current and no-load current must be correct. Otherwise, the V/F oscillation suppression effect will not be satisfactory.

Function Code	Parameter Name	Setting Range	Default
P4-00	FWD function selection	1: Forward RUN (FWD)	Standard
P4-01	REV function selection	2: Reverser run (REV)	Standard
P4-02	X1 function selection	9: Fault reset (RESET)	Standard
P4-03	X2 function selection	12: Multi-reference terminal 1	Standard
P4-04	X3 function selection	13: Multi-reference terminal 2	Standard
P4-05	X4 function selection	0	Extended
P4-06	X5 function selection	0	Extended
P4-07	X6 function selection	0	Extended

Group P4: Input Terminals

The following table lists the functions available for the X terminals.

Table 6-1 Functions of X termi

Value	Function	Description
0	No function	Set 0 for reserved terminals to avoid malfunction.
1	Forward RUN (FWD)	The terminal is used to control forward or reverse RUN of the
2	Reverse RUN (REV)	AC drive.
3	Three-line control	The terminal determines three-line control of the AC drive. For details, see the description of P4-11.
4	Forward JOG (FJOG)	FJOG indicates forward JOG running, while RJOG indicates reverse JOG running. The JOG frequency, acceleration time and deceleration time are described respectively in P8-00, P8-01 and P8-02.
5	Reverse JOG (RJOG)	

Value	Function	Description		
6	Terminal UP	If the frequency is determined by external terminals, the		
		terminals with the two functions are used as increment and		
7	7 Terminal DOWN	decrement commands for frequency modification. When the		
1		frequency source is digital setting, they are used to adjust the		
		frequency.		
		The AC drive blocks its output, the motor coasts to rest and is		
8	Coast to stop	not controlled by the AC drive. It is the same as coast to stop		
		described in P6-10.		
9	Fault reset (RESET) The terminal is used for fault reset function, the same as the			

1		function of RESET key on the operation panel. Remote fault reset		
		is implemented by this function.		
		The AC drive decelerates to stop, but the running parameters are		
		all memorized, such as PLC, swing frequency and PID parameters.		
10	RUN pause	After this function is disabled, the AC drive resumes its status		
		before stop.		
		If this terminal becomes ON, the AC drive reports Err15 and		
11	Normally open (NO) input of	performs the fault protection action. For more details, see the		
	external fault	description of P9-47.		
12	Multi-reference terminal 1			
13	Multi-reference terminal 2	The setting of 16 speeds or 16 other references can be implemented		
14	Multi-reference terminal 3	through combinations of 16 states of these four terminals.		
15	Multi-reference terminal 4			
10	Terminal 1 for acceleration/			
16	deceleration time selection	Totally four groups of acceleration/deceleration time can be		
17	Terminal 2 for acceleration/	selected through combinations of two states of these two		
17	deceleration time selection	terminals.		
10	P	The terminal is used to perform switchover between two frequency		
18	Frequency source switchover	sources according to the setting in PO-07.		
		If the frequency source is digital setting, the terminal is used		
19	UP and DOWN setting clear	to clear the modification by using the $\ensuremath{\text{UP/DOWN}}$ function or the		
15	(terminal, operation panel)	increment/decrement key on the operation panel, returning the		
		set frequency to the value of PO-08.		
		If the command source is set to terminal control (PO-O2= 1), this		
		terminal is used to perform switchover between terminal control		
20	Command source switchover	and operation panel control. If the command source is set to		
20	terminal	communication control (PO-02 = 2), this terminal is used to		
		perform switchover between communication control and operation		
		panel control.		
	Acceleration/Deceleration	It enables the AC drive to maintain the current frequency output		
21	prohibited	without being affected by external signals (except the STOP		
	hroutnited	command).		

Value	Function	Description
		PID is invalid temporarily. The AC drive maintains the current
22	PID pause	frequency output without supporting PID adjustment of frequency
		source.
23		The terminal is used to restore the original status of PLC control
	PLC status reset	for the AC drive when PLC control is started again after a pause.
9.4		The AC drive outputs the central frequency, and the swing
24	Swing pause	frequency function pauses.
25	Counter input This terminal is used to count pulses.	

26	Counter reset	This terminal is used to clear the counter status.
20	Length count input	This terminal is used to count the length.
28	Length reset	This terminal is used to clear the length.
29	Torque control prohibited	The AC drive is prohibited from torque control and enters the
		speed control mode.
30	Pulse input (enabled only for X3)	X3 is used for pulse input.
31	Reserved	Reserved.
32	Immediate DC braking	After this terminal becomes ON, the AC drive directly switches over to the DC braking state.
33	Normally closed (NC) input of	After this terminal becomes ON, the AC drive reports Err15 and
	external fault	stops.
34 Frequency modification		After this terminal becomes ON, the AC drive does not respond
	forbidden	to any frequency modification.
35	Reverse PID action direction	After this terminal becomes ON, the PID action direction is
		reversed to the direction set in PA-03.
		In operation panel mode, this terminal can be used to stop the
36	External STOP terminal 1	AC drive, equivalent to the function of the STOP key on the
		operation panel.
		It is used to perform switchover between terminal control and
37	Command source switchover	communication control. If the command source is terminal
	terminal 2	control, the system will switch over to communication control
		after this terminal becomes ON.
		After this terminal becomes ON, the integral adjustment function
38	PID integral pause	pauses. However, the proportional and differentiation
		adjustment functions are still valid.
	Switchover between main	After this terminal becomes ON, the frequency source X is
39	frequency source X and preset	replaced by the preset frequency set in PO-08.
	frequency	repraced by the preset frequency set in FO-Vo.
	Switchover between auxiliary	After this terminal is applied the frequency server V is
40	frequency source Y and preset	After this terminal is enabled, the frequency source Y is replaced by the preset frequency set in $PO-O8$
	frequency	replaced by the preset frequency set in PO-08.

Value	Function	Description
41	Motor selection terminal 1	Switchover among the four groups of motor parameters can be
		implemented through the four state combinations of these two
42	Motor selection terminal 2	terminals.
43	PID parameter switchover	If the PID parameters switchover performed by means of di terminal (PA-18 = 1), the PID parameters are PA-05 to PA-07 when the terminal becomes OFF; the PID parameters are PA-15 to PA-17 when this terminal becomes ON.
44	User-defined fault 1	If these two terminals become ON, the AC drive reports Err27 and

		Err28 respectively, and performs fault protection actions based
45	User-defined fault 2	on the setting in P9-49.
		This terminal enables the AC drive to switch over between speed
	Speed control/Torque	control and torque control. When this terminal becomes OFF, the
46	control switchover	AC drive runs in the mode
	control switchover	set in AO-OO. When this terminal becomes ON, the AC drive $% \left({{\left[{{{\left[{{C_{\rm{B}}} \right]}} \right]}} \right)$
		switches over to the other control mode.
		When this terminal becomes ON, the AC drive stops within the
		shortest time. During the stop process, the current remains at
47	Emergency stop	the set current upper limit. This
		function is used to satisfy the requirement of stopping the AC
		drive in emergency state.
		In any control mode (operation panel, terminal or
40	External STOP terminal 2	communication), it can be used to make the AC drive decelerate
48		to stop. In this case, the deceleration time is
		deceleration time 4.
		When this terminal becomes ON, the AC drive decelerates to the
49	Deceleration DC braking	initial frequency of stop DC braking and then switches over to
		DC braking state.
	Clear the current running	When this terminal becomes ON, the AC drive's current running
50	time	time is cleared. This function must be supported by P8-42 and
	time	P8-53.
		It is used to perform switchover between two-line control and
	Switchover between two-	three-line control. If P4 -11 is set to Two-line mode 1, the
51	line mode and three-line	system switches over to three-line mode 1 when the X allocated
	mode	with this function becomes ON

The four multi-reference terminals have 16 state combinations, corresponding to 16 reference values, as listed in the following table.

Table 6-2	State	combinations	of	the	four	multi-reference	terminals
-----------	-------	--------------	----	-----	------	-----------------	-----------

K4	K3	K2	K1	Reference Setting	Corresponding Parameter
OFF	0FF	0FF	OFF	Reference O	PC-00
OFF	0FF	0FF	ON	Reference 1	PC-01
OFF	0FF	ON	OFF	Reference 2	PC-02
OFF	0FF	ON	ON	Reference 3	PC-03
OFF	ON	0FF	OFF	Reference 4	PC-04
OFF	ON	0FF	ON	Reference 5	PC-05
OFF	ON	ON	OFF	Reference 6	PC-06
OFF	ON	ON	ON	Reference 7	PC-07
ON	0FF	OFF	OFF	Reference 8	PC-08
ON	0FF	OFF	ON	Reference 9	PC-09
ON	0FF	ON	OFF	Reference 10	PC-10
ON	0FF	ON	ON	Reference 11	PC-11
ON	ON	0FF	OFF	Reference 12	PC-12
ON	ON	0FF	ON	Reference 13	PC-13

ON	ON	ON	OFF	Reference 14	PC-14
ON	ON	ON	ON	Reference 15	PC-15

If the frequency source is multi-reference, the value 100% of PC-00 to PC-15 corresponds to the value of PO-10 (Maximum frequency).

Besides the multi-speed function, the multi-reference can be also used as the PID setting source or the voltage source for V/F separation, satisfying the requirement on switchover of different setting values.

Two terminals for acceleration/deceleration time selection have four state combinations, as listed in the following table.

Table 6-3 State combinations of two terminals for acceleration/deceleration time selection

Terminal 9	Terminel 1	Acceleration/Deceleration Time	Corresponding
Terminal 2	Terminal 1	Selection	Parameters
OFF	OFF	Acceleration/Deceleration time 1	P0-17, P0-18
OFF	ON	Acceleration/Deceleration time 2	P8-03, P8-04
ON	OFF	Acceleration/Deceleration time 3	P8-05, P8-06
ON	ON	Acceleration/Deceleration time 4	P8-07, P8-08

Two motor selection terminals have four state combinations, corresponding to four motors, as listed in the following table.

Table of 1 State combinations of two motor selection terminars					
Terminal 2	Terminal 1	Selected Motor	Corresponding		
			Parameters		
OFF	OFF	Motor 1	Group P1, Group P2		
OFF	ON	Motor 2	Group A2		
ON	OFF	Motor 3	Group A3		
ON	ON	Motor 4	Group A4		

Table 6--4 State combinations of two motor selection terminals

Function Code	Parameter Name	Setting Range	Default
P4-10	X filter time gai	0.000 - 1.000s	0.010s

It is used to set the software filter time of X terminal status. If X terminals are liable to interference and may cause malfunction, increase the value of this parameter to enhance the anti-interference capability. However, increase of X filter time will reduce the response of X terminals.

Function Code	Parameter Name	Setting Range	Default
P4-11		0: Two-line mode 1	
	Transford	1: Two-line mode 2	
	Terminal command mode	2: Three-line mode 1	0
		3: Three-line mode 2	

This parameter is used to set the mode in which the AC drive is controlled by external terminals. The following uses FWD, REV and X1 as an example, with allocating functions of FWD, REV and X1 by setting P4-00 to P4-02.

* 0: Two-line mode 1

It is the most commonly used two-line mode, in which the forward/reverse rotation of the motor is decided by FWD and REV. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	0	Two-line 1
P4-00	FWD function selection	1	Forward RUN (FWD)
P4-01	REV function selection	2	Reverse RUN (REV)

12.4	1/2	RUN	
K1	K2	command	KC500
1	0	Forward RUN	K1
0	1	Reverse RUN	K2 Reverse RUN (REV)
1	1	Stop	COM Digital common
0	0	Stop	

Figure 6-7 Setting of two-line mode 1

As shown in the preceding figure, when only K1 is ON, the AC drive instructs forward rotation. When only K2 is ON, the AC drive instructs reverse rotation. When K1 and K2 are ON or OFF simultaneously, the AC drive stops.

* 1: Two-line mode 2

In this mode, FWD is RUN enabled terminal, and REV determines the running direction. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	1	Two-line 2
P4-00	FWD function selection	1	RUN enabled
P4-01	REV function selection	2	Forward or reverse direction

Figure 6-8 Setting of two-line mode 2

1/1	K0 -	RUN		
K1	К2 —	command		KC500
1	•	Forward	K1	
	U	RUN		-• RUN enabled
1	1	Reverse	K2	
		RUN	Forward or reverse	
0	0	Stop		
				COM Digital common
0	1	Stop		

As shown in the preceding figure, if K1 is ON, the AC drive instructs forward rotation when K2 is OFF, and instructs reverse rotation when K2 is ON. If K1 is OFF, the AC drive stops.

* 2: Three-line mode 1

In this mode, X1 is RUN enabled terminal, and the direction is decided by FWD and REV. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	2	Three-line 1
P4-00	FWD function selection	1	Forward RUN (FWD)
P4-01	REV function selection	2	Reverse RUN (REV)
P4-02	X1 function selection	3	Three-line control

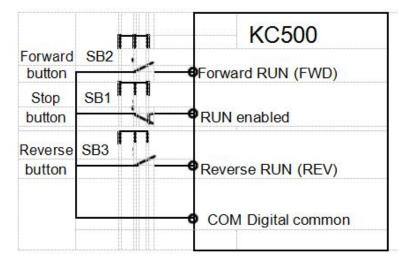


Figure 6-9 Setting of three-line mode 1

As shown in the preceding figure, if SB1 is ON, the AC drive instructs forward rotation when SB2 is pressed to be ON and instructs reverse rotation when SB3 is pressed to be ON. The AC drive stops immediately after SB1 becomes OFF. During normal startup and running, SB1 must remain ON. The AC drive's running state is determined by the final actions on SB1, SB2 and SB3.

* 3: Three-line mode 2

In this mode, X1 is RUN enabled terminal. The RUN command is given by FWD and the direction is decided by REV. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
P4-11	Terminal command mode	3	Three-line 2
P4-00	FWD function selection	1	RUN enabled
D4_01	REV function selection	9	Forward or reverse
P4-01			direction
P4-02	X1 function selection	3	Three-line control

Figure 6-10 Setting of three-line mode $2\,$

		RUN 🗖	KC500
		button SB2	
	Running	Stop	RUN command
(direction	button SB1	o Stop running
	Forward	к	• Running direction
	Reverse		
			 Digital common

As shown in the preceding figure, if SB1 is ON, the AC drive starts running when SB2 is pressed to be ON; the AC drive instructs forward rotation when K is OFF and instructs reverse rotation when K is ON. The AC drive stops immediately after SB1 becomes OFF. During normal startup and running, SB1 must remain ON. The AC drive's running state is determined by the final actions of SB1, SB2 and K.

Function Code	Parameter Name	Setting Range	Default
P4-12	Terminal UP/DOWN rate	0.01-65.535 Hz/s	1.00 Hz/s

It is used to adjust the rate of change of frequency when the frequency is adjusted by means of terminal UP/DOWN.

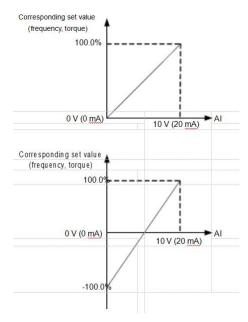
If P0-22 (Frequency reference resolution) is 2, the setting range is 0.001 - 65.535 Hz/s.

If PO-22 (Frequency reference resolution) is 1, the setting range is 0.01 - 655.35 Hz/s.

Function Code	Parameter Name	Setting Range	Default
P4-13	VI minimum input	0.00 V to P4-15	0.00 V
P4-14	Corresponding setting of VI minimum input	-100. 00% - 100. 0%	0.0%
P4-15	VI maximum input	P4-13 to 10.00 V	10.00 V
P4-16	Corresponding setting of VI maximum input	-100. 00% - 100. 0%	100. 0%
P4-17	VI filter time	0.00 - 10.00s	0.10s

These parameters are used to define the relationship between the analog input voltage and the corresponding setting. When the analog input voltage exceeds the maximum value (P4-15), the maximum value is used. When the analog input voltage is less than the minimum value (P4-13), the value set in P4-34 (Setting for AI less than minimum input) is used.

When the analog input is current input, 1 mA current corresponds to 0.5 V voltage.P4-17 (VI filter time) is used to set the software filter time of VI. If the analog input is liable to interference, increase the value of this parameter to stabilize the detected analog input.


However, increase of the AI filter time will slow the response of analog detection.

Set this parameter properly based on actual conditions.

In different applications, 100% of analog input corresponds to different nominal values. For details, refer to the description of different applications.

Two typical setting examples are shown in the following figure.

Figure 6-11 Corresponding relationship between analog input and set values

Function Code	Parameter Name	Setting Range	Default
P4-18	CI minimum input	0.00 V to P4-20	0.00 V
P4-19 Corresponding setting of CI minimum input		-100. 00% - 100. 0%	0.0%
P4-20	CI maximum input	P4-18 to 10.00 V	10.00 V
P4-21 Corresponding setting of CI maximum input		-100. 00% - 100. 0%	100.0%
P4-22 CI filter time		0.00 - 10.00s	0.10s
Function Code	Parameter Name	Setting Range	Default
P4-35	FWD delay time	0.0-3600.0s	0.0s
P4-36	REV delay time	0.0-3600.0s	0.0s
P4-37	X1 delay time	0.0-3600.0s	0.0s

These parameters are used to set the delay time of the AC drive when the status of X terminals changes.

Currently, only FWD, REV and X1 support the delay time function.

Function Code	Parameter Name	Setting Range	Default
	X valid mode selection 1	Unit's digit (FWD valid mode)	
		0: High level valid	
D4 90		1: Low level valid	00000
P4-38		Ten's digit (REV valid mode)	00000
		0, 1 (same as FWD)	
		Hundred's digit (X1 valid mode)	

		0, 1 (same as FWD)	
		Thousand's digit (X2 valid mode)	
		0, 1 (same as FWD)	
		Ten thousand's digit (X3 valid	
		mode)	
		0, 1 (same as FWD)	
P4-39	X valid mode selection 2	Unit's digit (X4 valid mode)	
		0, 1 (same as FWD)	
		Ten's digit (X5 valid mode)	
		0, 1 (same as FWD)	
		Hundred's digit (X6 state)	00000
		0, 1 (same as FWD)	00000

These parameters are used to set the valid mode of X terminals.

* 0: High level valid

The X terminal is valid when being connected with COM, and invalid when being disconnected from COM.

* 1: Low level valid

The X terminal is invalid when being connected with COM, and invalid when being disconnected from COM.

Group P5: Output Terminals

Function Code	Parameter Name	Default
F5-02	Relay function (A-B-C)	2
F5-04	Relay function (A1-B1-C1)	1

The functions of the output terminals are described in the following table.

Table 6-	5 Function	ns of ou	utput	terminals
----------	------------	----------	-------	-----------

Value	Function	Description
0	No output	The terminal has no function.
1	AC drive running	When the AC drive is running and has output frequency (can be zero), the terminal becomes ON.
2	Fault output (stop)	When the AC drive stops due to a fault, the terminal becomes ON.
3	Frequency-level detection FDT1 output	Refer to the descriptions of P8-19 and P8-20.

Value	Function	Description
4	Frequency reached	Refer to the descriptions of P8-21.
F	Zero-speed running	If the AC drive runs with the output frequency of 0, the terminal becomes ON.
5	(no output at stop)	If the AC drive is in the stop state, the terminal becomes OFF.

6	Motor overload pre-warning	The AC drive judges whether the motor load exceeds the overload pre-warning threshold before performing the protection action. If the pre-warning threshold is exceeded, the terminal becomes ON. For motor overload parameters, see the descriptions of P9-00 to P9-02.
7	AC drive overload pre- warning	The terminal becomes ON 10s before the AC drive overload protection action is performed.
8	Set count value reached	The terminal becomes ON when the count value reaches the value set in $PB-08$.
9	Designated count value reached	The terminal becomes ON when the count value reaches the value set in PB-09.
10	Length reached	The terminal becomes ON when the detected actual length exceeds the value set in PB-05.
11	PLC cycle complete	When simple PLC completes one cycle, the terminal outputs a pulse signal with width of 250 ms.
12	Accumulative running time reached	If the accumulative running time of the AC drive exceeds the time set in P8-17, the terminal becomes ON.
13	Frequency limited	If the set frequency exceeds the frequency upper limit or lower limit and the output frequency of the AC drive reaches the upper limit or lower limit, the terminal becomes ON.
14	Torque limited	In speed control mode, if the output torque reaches the torque limit, the AC drive enters the stall protection state and meanwhile the terminal becomes ON.
15	Ready for RUN	If the AC drive main circuit and control circuit become stable, and the AC drive detects no fault and is ready for RUN, the terminal becomes ON.
16	VI larger than CI	When the input of VI is larger than the input of CI, the terminal becomes ON.
17	Frequency upper limit reached	If the running frequency reaches the upper limit, the terminal becomes ON.
18	Frequency lower limit reached (no output at stop)	If the running frequency reaches the lower limit, the terminal becomes ON. In the stop state, the terminal becomes OFF.
19	Undervoltage state output	If the AC drive is in undervoltage state, the terminal becomes ON.
20	Communication setting	Refer to the communication protocol.
21	Reserved	Reserved.
22	Reserved	Reserved.
23	Zero-speed running 2 (having output at stop)	If the output frequency of the AC drive is 0, the terminal becomes ON. In the state of stop, the signal is still ON.
24	Accumulative power-on time reached	If the AC drive accumulative power-on time (P7-13) exceeds the value set in P8-16, the terminal becomes ON.
25	Frequency level detection FDT2 output	Refer to the descriptions of P8-28 and P8-29.

Value	Function	Description
26	Frequency 1 reached	Refer to the descriptions of P8-30 and P8-31.
27	Frequency 2 reached	Refer to the descriptions of P8-32 and P8-33.
28	Current 1 reached	Refer to the descriptions of P8-38 and P8-39.

29	Current 2 reached	Refer to the descriptions of P8-40 and P8-41.
30	Timing reached	If the timing function (P8-42) is valid, the terminal becomes ON after the current running time of the AC drive reaches the set time.
31	VI input limit exceeded	If VI input is larger than the value of P8-46 VI input voltage upper limit) or lower than the value of P8-45 (VI input voltage lower limit), the terminal becomes ON.
32	Load becoming 0	If the load becomes 0, the terminal becomes ON.
33	Reverse running	If the AC drive is in the reverse running state, the terminal becomes ON.
34	Zero current state	Refer to the descriptions P8-28 and P8-29.
35	IGBT temperature reached	If the heatsink temperature of the AC drive IGBT (P7-07)reaches the set IGBT temperature threshold (P8-47), the terminal becomes ON.
36	Software current limit exceeded	Refer to the descriptions of P8-36 and P8-37.
37	Frequency lower limit reached (having output at stop)	If the running frequency reaches the lower limit, the terminal becomes ON. In the stop state, the signal is still ON.
38	Alarm output	If a fault occurs on the AC drive and the AC drive continues to run, the terminal outputs the alarm signal.
39	Motor overheat warning	If the motor temperature reaches the temperature set in P9-58 (Motor overheat warning threshold), the terminal becomes ON. You can view the motor temperature by using U0-34.
40	Current running time reached	If the current running time of AC drive exceeds the value of P8-53, the terminal becomes ON.

Function Code	Parameter Name	Default
P5-07	AM function selection	0
P5-08	FM function selection	1

The output range of AM and FM is 0-20 mA or 0-10 V. The relationship between pulse and analog output ranges and corresponding functions is listed in the following table.

Table 6-6 Relationship between pulse and analog output ranges and corresponding functions

Value	Function	Range (Corresponding to Pulse or Analog Output Range 0.0% - 100.0%)
0	Running frequency	0 to maximum output frequency
1	Set frequency	0 to maximum output frequency
2	Output current	0 to 2 times of rated motor current
3	Output torque (absolute value)	0 to 2 times of rated motor torque

Value	Function	Range (Corresponding to Pulse or Analog Output Range 0.0% - 100.0%)
4	Output power	0 to 2 times of rated power
5	Output voltage	0 to 1.2 times of rated AC drive voltage
6	Pulse input	0.01 - 100.00 kHz
7	VI	0 - 10 V
8	CI	0-10 V (or 0-20 mA)
9	КЕҮ	0 - 0 V

10	Length	0 to maximum set length
11	Count value	0 to maximum count value
12	Communication setting	0.0% - 100.0%
13	Motor rotational speed	0 to rotational speed corresponding to maximum output frequency
14	Output current	0.0 - 1000.0 A
15	Output voltage	0.0-000.0 V
16	Output torque (actual value)	-2 times of rated motor torque to 2 times of rated motor torque

Function Code	Parameter Name	Setting Range	Default
P5-10	AM offset coefficient	-100. 0% - 100. 0%	0.0%
P5-11	AM gain	-10.00 - 10.00	1.00
P5-12	FM offset coefficient	-100. 0% - 100. 0%	0.00%
P5-13	FM gain	-10. 00 - 10. 00	1.00

These parameters are used to correct the zero drift of analog output and the output amplitude deviation. They can also be used to define the desired AO curve.

If "b" represents zero offset, "k" represents gain, "Y" represents actual output, and "X" represents standard output, the actual output is: Y = kX + b.

The zero offset coefficient 100% of FM and AM corresponds to 10 V (or 20 mA). The standard output refers to the value corresponding to the analog output of 0 to 10 V (or 0 to20 mA) with no zero offset or gain adjustment.

For example, if the analog output is used as the running frequency, and it is expected that the output is 8 V when the frequency is 0 and 3 V at the maximum frequency, the gain shall be set to -0.50, and the zero offset shall be set to 80%.

Function Code	Parameter Name	Setting Range	Default
	Relay 1(A-B-C) output delay		
P5-18	time	0.0-3600.0s	0.0s
	Relay 2(A1-B1-C1) output		
P5-19	delay time	0.0-3600.0s	0.0s

Group P6: Start/Stop Control

Function Code	Parameter Name	Setting Range	Default
P6-10	Stop mode	0: Decelerate to stop	0
10-10	Stop mode	1: Coast to stop	0

* 0: Decelerate to stop

After the stop command is enabled, the AC drive decreases the output frequency according to the deceleration time and stops when the frequency decreases to zero. * 1: Coast to stop

After the stop command is enabled, the AC drive immediately stops the output. The motor will coast to stop based on the mechanical inertia.

Function Code	Parameter Name	Setting Range	Default

P6-15	Brake use ratio	0% - 100%	100%
-------	-----------------	-----------	------

It is valid only for the AC drive with internal braking unit and used to adjust the duty ratio of the braking unit. The larger the value of this parameter is, the better the braking result will be. However, too larger value causes great fluctuation of the AC drive bus voltage during the braking process.

Group P7: Operation Panel and display

Function Code	Parameter Name	Setting Range	Default
		0: MF.K key disabled	
		1: Switchover between operation	
	MF.K Key function selection	panelcontrol and remote command	
		control(terminal or communica	
P7-01		-tion)	0
		2: Switchover between forward	
		rotation and reverse rotation	
		3: Forward JOG	
		4: Reverse JOG	

MF.K key refers to multifunctional key. You can set the function of the MF.K key by using this parameter. You can perform switchover by using this key both in stop or running state.

* 0: MF.K key disabled

This key is disabled.

* 1: Switchover between operation panel control and remote command control (terminal or communication)

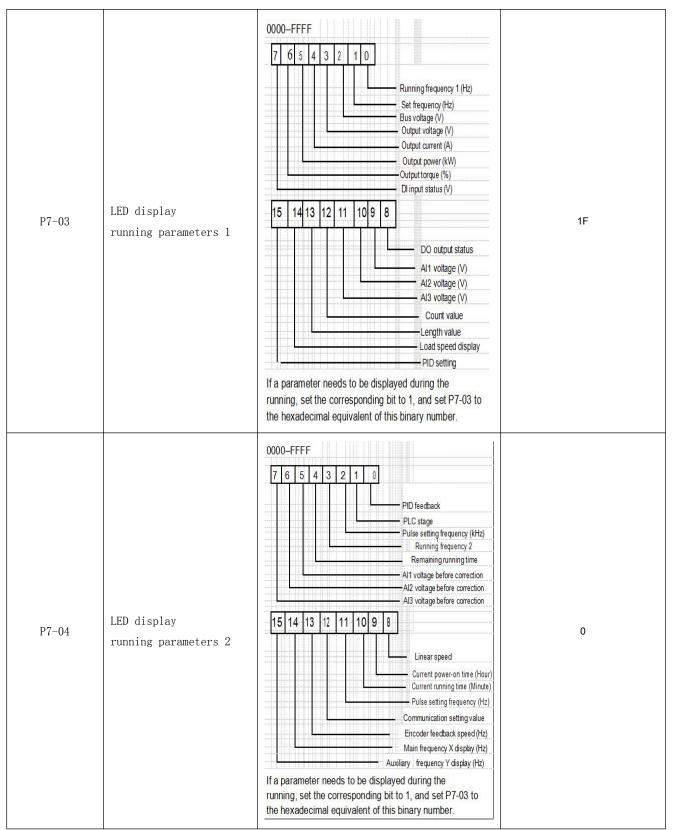
You can perform switchover from the current command source to the operation panel control (local operation). If the current command source is operation panel control, this key is invalid.

* 2: Switchover between forward rotation and reverse rotation

You can change the direction of the frequency reference by using the MF.K key.

It is valid only when the current command source is operation panel control

* 3: Forward JOG


You can perform forward JOG (FJOG) by using the MF.K key.

* 4: Reverse JOG

You can perform reverse JOG (FJOG) by using the MF.K key.

Function Code	Parameter Name	Setting Range	Default
D7 00		0: STOP/RESET key enabled only in	0
		operation panel control	
P7-02	STOP/RESET key function	1: STOP/RESET key enabled in any	0
		operation mode	

Function Code Parameter Name	Setting Range	Default
------------------------------	---------------	---------

These two parameters are used to set the parameters that can be viewed when the AC drive is in the running state. You can view a maximum of 32 running state parameters that are displayed from the lowest bit of P7-03.

Function Code	Parameter Name	Setting Range	Default

Function Code	Parameter Name	Setting Range	Default
P7-06	Load speed display coefficient	0.0001 - 6.5000	1.0000

This parameter is used to adjust the relationship between the output frequency of the AC drive and the load speed. For details, see the description of P7-12.

Function Code	Parameter Name	Setting Range	Default
P7-07	Heatsink temperature of AC	0.0 - 100.0° C	
17-07	drive IGB		

It is used to display the insulated gate bipolar transistor (IGBT) temperature of the AC drive IGBT, and the IGBT overheat protection value of the AC drive IGBT depends on the model.

Function Code	Parameter Name	Setting Range	Default
P7-09	Accumulative running time	0-65535 h	-

It is used to display the accumulative running time of the AC drive. After the accumulative running time reaches the value set in F8-17, the terminal with the digital output function 12 becomes ON.

Function Code	Parameter Name	Setting Range	Default
P7-10	Product number	AC drive product number	-
P7-11	Software version	Software version of control board	-
		0: 0 decimal place	
P7-12	Number of decimal places for	1: 1 decimal place	1
P7-12	load speed display	2: 2 decimal places	1
		3: 3 decimal places	

P7-12 is used to set the number of decimal places for load speed display. The following gives an example to explain how to calculate the load speed: Assume that P7-06 (Load speed display coefficient) is 2.000 and P7-12 is 2 (2 decimal places). When the running frequency of the AC drive is 40.00 Hz, the load speed is 40.00 x 2.000 = 80.00 (display of 2 decimal places).

If the AC drive is in the stop state, the load speed is the speed corresponding to the set frequency, namely, "set load speed". If the set frequency is 50.00 Hz, the load speed in the stop state is $50.00 \times 2.000 = 100.00$ (display of 2 decimal places).

Function Code	Parameter Name	Setting Range	Default
P7-13	Accumulative power-on time	0-65535 h	0h

It is used to display the accumulative power-on time of the AC drive since the delivery. If the time reaches the set power-on time (P8-17), the terminal with the digital output function 24 becomes ON.

Function Code Parameter Name	Setting Range	Default
------------------------------	---------------	---------

P7-14 Accumulative power consumption 0-65535 kWh	/
--	---

It is used to display the accumulative power consumption of the AC drive until now.

Group F8: Auxiliary Functions

Function Code	Parameter Name	Setting Range	Default
P8-00	JOG running frequency	0.00 Hz to maximum frequency	2.00 Hz
P8-01	JOG acceleration time	0.0-6500.0s	20.0s
P8-02	JOG deceleration time	0. 0 - 6500. 0s	20. 0s

These parameters are used to define the set frequency and acceleration/ deceleration time of the AC drive when jogging. The startup mode is "direct start" (P6-00 = 0) and the stop mode is "Decelerate to stop" (P6-10 = 0) during jogging.

Function Code	Parameter Name	Setting Range	Default
P8-12	Forward/Reverse rotation	0.0 - 3000.0s	0. 0s
F0 ⁻¹²	dead-zone time	0.0-3000.05	0.05

It is used to set the time when the output is $0\ {\rm Hz}$ at transition of the AC drive forward rotation and reverse rotation, as shown in the following figure.

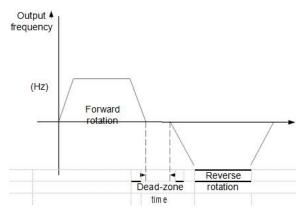


Figure 6-16 Forward/Reverse rotation dead-zone time

Function Code	Parameter Name	Setting Range	Default
DO 19	Deverage control	0: Enabled	0
P8-13	Reverse control	1: disabled	U

It is used to set whether the AC drive allows reverse rotation. In the applications where reverse rotation is prohibited, set this parameter to 1.

Function Code	Parameter Name	Setting Range	Default
	Running mode when set frequency	0: Run at frequency lower limit	
P8-14	lower than frequency lower	1: Stop	0
	limit	2: Run at zero speed	

It is used to set the AC drive running mode when the set frequency is lower than the frequency lower limit. The KC500 provides three running modes to satisfy requirements of various applications.

Function Code	Parameter Name	Setting Range	Default

Function Code	Parameter Name	Setting Range	Default
P8-17	Accumulative running	0 - 65000 h	0 h
	time threshold		

It is used to set the accumulative running time threshold of the AC drive. If the accumulative running time (P7-09) reaches the value set in this parameter, the corresponding DO terminal becomes ON.

Function Code	Parameter Name	Setting Range	Default
P8-18	Stantun protoction	0: No	0
F0-10	Startup protection	1:Yes	0

This parameter is used to set whether to enable the safety protection. If it is set to 1, the AC drive does not respond to the run command valid upon AC drive power-on (for example, an input terminal is ON before power-on). The AC drive responds only after the run command is cancelled and becomes valid again.

In addition, the AC drive does not respond to the run command valid upon fault reset of the AC drive. The run protection can be disabled only after the run command is cancelled.

In this way, the motor can be protected from responding to run commands upon power-on or fault reset in unexpected conditions.

Function Code	Parameter Name	Setting Range	Default
P8-27	Terminal JOG preferred	0: disabled 1: Enabled	0

It is used to set whether terminal JOG is preferred.

If terminal JOG is preferred, the AC drive switches to terminal JOG running state when there is a terminal JOG command during the running process of the AC drive.

Function Code	Parameter Name	Setting Range	Default
P8-48		0: Fan working during running	0
F0-40	Cooling fan control	1: Fan working continuously	0

It is used to set the working mode of the cooling fan. If this parameter is set to 0, the fan works when the AC drive is in running state. When the AC drive stops, the cooling fan works if the heatsink temperature is higher than 40° C, and stops working if the heatsink temperature is lower than 40° C.

If this parameter is set to 1, the cooling fan keeps working after power-on.

Function Code	Parameter Name	Setting Range	Default
P8-49 Wakeup	Welson Community	Dormant frequency (P8-51) to maximum	0.00 Hz
	Wakeup frequency	frequency (PO-10)	0.00 HZ
P8-50	Wakeup delay time	0.0-6500.0s	0.0s
P8-51	Dormant frequency	0.00 Hz to wakeup frequency (P8-49)	0.00 Hz
P8-52	Dormant delay time	0.0-6500.0s	0. 0s

These parameters are used to implement the dormant and wakeup functions in the water supply application.

When the AC drive is in running state, the AC drive enters the dormant state and stops automatically after the dormant delay time (P8-52) if the set frequency is lower than or equal to the dormant frequency (P8-51).

When the AC drive is in dormant state and the current running command is effective, the AC drives starts up after the wakeup delay time (P8-50) if the set frequency is higher than or equal to the wakeup frequency (P8-49).

Generally, set the wakeup frequency equal to or higher than the dormant frequency. If the wakeup frequency and dormant frequency are set to 0, the dormant and wakeup functions are disabled.

When the dormant function is enabled, if the frequency source is PID, whether PID operation is performed in the dormant state is determined by PA-28. In this case, select PID operation enabled in the stop state (PA-28 = 1).

Function Code	Parameter Name	Setting Range	Default
P8-53	Current running	0.0-6500.0 min	0.0 min
10 00	time reached		0.0 mm

If the current running time reaches the value set in this parameter, the corresponding DO becomes ON, indicating that the current running time is reached. Group P9: Fault and Protection

Function Code	Parameter Name	Setting Range	Default	
PO 00	Motor overload protection	0: disabled	1	
P9-00	selection	1: Enabled	1	
P9-01	Motor overload protection gain	0. 20 - 10. 00	1.00	

* P9-00 = 0

The motor overload protective function is disabled. The motor is exposed to potential damage due to overheating. A thermal relay is suggested to be installed between the AC drive and the motor.

* P9-00 = 1

The AC drive judges whether the motor is overloaded according to the inverse time-lag curve of the motor overload protection.

The inverse time-lag curve of the motor overload protection is:220% x P9-01 x rated motor current (if the load remains at this value for one minute, the AC drive reports motor overload fault), or150% x P9-01 x rated motor current (if the load remains at this value for 60 minutes, the AC drive reports motor overload fault) Set P9-01 properly based on the actual overload capacity. If the value of P9-01 is set too large, damage to the motor may result because the motor overheats but the AC drive does not report the alarm.

Function Code	Parameter Name	Setting Range	Default
P9-02	Motor overload warning coefficient	50% - 100%	80%

This function is used to give a warning signal to the control system via DO before motor overload protection. This parameter is used to determine the percentage, at which pre-warning is performed before motor overload. The larger the value is, the less advanced the pre-warning will be. When the accumulative output current of the AC drive is greater than the value of the overload inverse time-lag curve multiplied by P9-02, the DO terminal on the AC drive allocated with function 6 (Motor overload pre-warning) becomes ON.

Function Code	Parameter Name	Setting Range	Default
P9-03	Overvoltage stall gain	0 (no stall overvoltage) - 100	0
P9-04	Overvoltage stall protective voltage	120% - 150%	130%

When the DC bus voltage exceeds the value of P9-04 (Overvoltage stall protective voltage) during deceleration of the AC drive, the AC drive stops deceleration and keeps the present running frequency. After the bus voltage declines, the AC drive continues to decelerate.P9-03 (Overvoltage stall gain) is used to adjust the overvoltage suppression capacity of the AC drive. The larger the value is, the greater the overvoltage suppression capacity will be.

In the prerequisite of no overvoltage occurrence, set P9-03 to a small value.

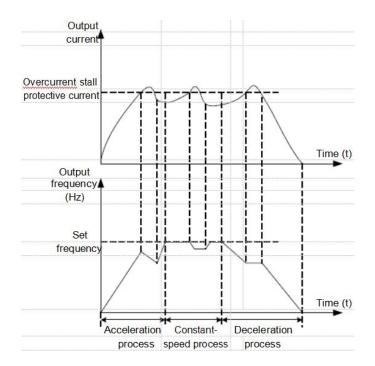
For small-inertia load, the value should be small. Otherwise, the system dynamic response will be slow. For large-inertia load, the value should be large. Otherwise, the suppression result will be poor and an overvoltage fault may occur.

If the overvoltage stall gain is set to 0, the overvoltage stall function is disabled. The overvoltage stall protective voltage setting 100% corresponds to the base values in the following table:

Table 6-7 Overvoltage	stall protective	voltage setting	100% corresponds	to base values
-----------------------	------------------	-----------------	------------------	----------------

Voltage Class	Corresponding Base Value
Single-phase 220 V	290 V
Three-phase 220 V	290 V
Three-phase 380 V	530 V
Three-phase 480 V	620 V
Three-phase 690 V	880 V

Function Code	Parameter Name	Setting Range	Default
P9-05	Overcurrent stall gain	0 - 100	20
P9-06	Overcurrent stall protective current	100% - 200%	150%


When the output current exceeds the overcurrent stall protective current during acceleration/ deceleration of the AC drive, the AC drive stops

acceleration/deceleration and keeps the present running frequency. After the output current declines, the AC drive continues to accelerate/decelerate.

P9-05 (Overcurrent stall gain) is used to adjust the overcurrent suppression capacity of the AC drive. The larger the value is, the greater the overcurrent suppression capacity will be. In the prerequisite of no overcurrent occurrence, set t P9-05 to a small value.

For small-inertia load, the value should be small. Otherwise, the system dynamic response will be slow. For large-inertia load, the value should be large. Otherwise, the suppression result will be poor and overcurrent fault may occur. If the overcurrent stall gain is set to 0, the overcurrent stall function is disabled.

Figure 6-25 diagram of the overcurrent stall protection function

Function Code	Parameter Name	Setting Range	Default
P9-07	Short-circuit to ground upon	0: disabled	1
F9=07	power-on	1: Enabled	I

It is used to determine whether to check the motor is short-circuited to ground at power-on of the AC drive. If this function is enabled, the AC drive's UVW will have voltage output a while after power-on.

Function Code	Parameter Name	Setting Range	Default
P9-12	Input phase loss protection/ contactor energizing protection selection	Unit's digit: Input phase loss protection Ten's digit: Contactor energizing protection 0: disabled	11
		1: Enabled	
Function Code	Parameter Name	Setting Range	Default
P9-13 0utput phase loss prot selection		tection 0: disabled 1: Enabled	1

It is used to determine whether to perform output phase loss protection.

Function Code	Parameter Name	Setting Range
P9-14	lst fault type	
P9-15	2nd fault type	0 - 99
P9-16	3rd (latest) fault type	

It is used to record the types of the most recent three faults of the AC drive. O indicates no fault. For possible causes and solution of each fault, refer to Chapter 8.

Function Code	Parameter Name	Description
P9-17	Frequency upon 3rd fault	It displays the frequency when the latest fault occurs.
P9-18	Current upon 3rd fault	It displays the current when the latest fault occurs.

P9-19 Bus volt	age upon 3rd fault	It displ	ays the bus	voltage w	hen the	latest fa	ult occurs.
----------------	--------------------	----------	-------------	-----------	---------	-----------	-------------

Function Code	Parameter Name	Description
		It displays the status of all X terminals when the latest
		fault occurs. The sequence is as follows: If a X is ON, the
P9-20	X status upon 3rd fault	setting is 1. If the X is OFF, the setting is 0. The value
		is the equivalent decimal number converted from the X
		status.
		It displays the status of all output terminals when the
	Output terminal status upon 3rd	latest fault occurs. The sequence is as follows: If an output
P9-21		terminal is ON, the setting is 1. If the output terminal is
	fault	OFF, the setting is 0. The value is the equivalent decimal
		number converted from the X statuses.
P9-22	AC drive status upon 3rd fault	Reserved
DO 02		It displays the present power-on time when the latest fault
P9-23	Power-on time upon 3rd fault	occurs.
D0 94		It displays the present running time when the latest fault
P9-24	Running time upon 3rd fault	occurs.

Group PA: Process Control PID Function

PID control is a general process control method. By performing proportional, integral and differential operations on the difference between the feedback signal and the target signal, it adjusts the output frequency and constitutes a feedback system to stabilize the controlled counter around the target value.

It is applied to process control such as flow control, pressure control and temperature control. The following figure shows the principle block diagram of PID control.

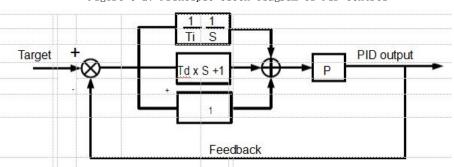


Figure 6-27 Principle block diagram of PID control

Function Code	Parameter Name	Setting Range	Default
		0: FA-01	
		1: VI	
		2: CI	
PA-00	PID setting source	3: KEY resistance range	0
		4: Pulse setting (X3)	
		5: Communication setting	
		6: Multi-reference	

PA-01	PID digital setting	0. 0% - 100. 0%	50.0%
-------	---------------------	-----------------	-------

PA-00 is used to select the channel of target process PID setting. The PID setting is a relative value and ranges from 0.0% to 100.0%. The PID feedback is also a relative value.

The purpose of PID control is to make the PID setting and PID feedback equal.

Function Code	Parameter Name	Setting Range	Default	
	PA-02 PID feedback source	0: VI		
		1: CI		
		2: KEY		
		3: VI - CI		
PA-02		PID feedback source	4: Pulse setting (X3)	0
		5: Communication setting		
		6: VI + CI		
		7: MAX (VI , CI)		
		8: MIN (VI , CI)		

This parameter is used to select the feedback signal channel of process PID. The PID feedback is a relative value and ranges from 0.0% to 100.0%.

Function Code	Parameter Name	Setting Range	Default
PA-03	PA-03 PID action direction	0: Forward action	0
111 05		1: Reverse action	0

* 0: Forward action

When the feedback value is smaller than the PID setting, the AC drive's output frequency rises. For example, the winding tension control requires forward PID action. * 1: Reverse action

When the feedback value is smaller than the PID setting, the AC drive's output frequency reduces. For example, the unwinding tension control requires reverse PID action. Note that this function is influenced by the X function 35 "Reverse PID action direction".

Function Code	Parameter Name	Setting Range	Default
PA-04	PID setting feedback range	0 - 65535	1000

This parameter is a non-dimensional unit. It is used for PID setting display (U0-15) and PID feedback display (U0-16).

Relative value 100% of PID setting feedback corresponds to the value of PA-04. If PA-04 is set to 2000 and PID setting is 100.0%, the PID setting display (U0-15) is 2000.

Function Code	Parameter Name	Setting Range	Default
PA-05	Proportional gain Kpl	0. 0 - 100. 0	20.0
PA-06	Integral time Til	0. 01 - 10. 00s	2.00s
PA-07	differential time Tdl	0.00 - 10.000	0.000s

* PA-05 (Proportional gain Kp1)

It decides the regulating intensity of the PID regulator. The higher the Kp1 is, the larger the regulating intensity is. The value 100.0 indicates when the deviation

between PID feedback and PID setting is 100.0%, the adjustment amplitude of the PID regulator on the output frequency reference is the maximum frequency. * PA-06 (Integral time Til)

It decides the integral regulating intensity. The shorter the integral time is, the larger the regulating intensity is. When the deviation between PID feedback and PID setting is 100.0%, the integral regulator performs continuous adjustment for the time set in PA-06. Then the adjustment amplitude reaches the maximum frequency. * PA-07 (differential time Td1)

It decides the regulating intensity of the PID regulator on the deviation change. The longer the differential time is, the larger the regulating intensity is. differential time is the time within which the feedback value change reaches 100.0%, and then the adjustment amplitude reaches the maximum frequency.

Function Code	Parameter Name	Setting Range	Default
PA-09	PID deviation limit	0. 0% - 100. 0%	0.0%

If the deviation between PID feedback and PID setting is smaller than the value of PA-09, PID control stops. The small deviation between PID feedback and PID setting will make the output frequency stabilize, effective for some closed-loop control applications.

Group PC: Multi-Reference and Simple PLC Function

The KC500 multi-reference has many functions. Besides multi-speed, it can be used as the setting source of the V/F separated voltage source and setting source of process PID. In addition, the multi-reference is relative value.

The simple PLC function is different from the KC500 user programmable function. Simple PLC can only complete simple combination of multi-reference, while the user programmable function is more practical. For details, see the descriptions of group A7.

Function Code	Parameter Name	Setting Range	Default
PC-00	Reference O	-100. 0% - 100. 0%	0.0%
PC-01	Reference 1	-100.0% - 100.0%	0.0%
PC-02	Reference 2	-100. 0% - 100. 0%	0.0%
PC-03	Reference 3	-100.0% - 100.0%	0.0%
PC-04	Reference 4	-100.0% - 100.0%	0.0%
PC-05	Reference 5	-100.0% - 100.0%	0.0%
PC-06	Reference 6	-100.0% - 100.0%	0.0%
PC-07	Reference 7	-100.0% - 100.0%	0.0%
PC-08	Reference 8	-100.0% - 100.0%	0.0%
PC-09	Reference 9	-100.0% - 100.0%	0.0%
PC-10	Reference 10	-100.0% - 100.0%	0.0%
PC-11	Reference 11	-100.0% - 100.0%	0.0%
PC-12	Reference 12	-100.0% - 100.0%	0.0%
PC-13	Reference 13	-100.0% - 100.0%	0.0%
PC-14	Reference 14	-100.0% - 100.0%	0.0%
PC-15	Reference 15	-100.0% - 100.0%	0.0%

Multi-reference can be the setting source of frequency, V/F separated voltage and process PID. The multi-reference is relative value and ranges from -100.0% to 100.0%.

As frequency source, it is a percentage relative to the maximum frequency. As V/F separated voltage source, it is a percentage relative to the rated motor voltage. As process PID setting source, it does not require conversion.

Multi-reference can be switched over based on different states of X terminals. For details, see the descriptions of group P4.

Function Code	Parameter Name	Setting Range	Default	
		0: Stop after the AC drive runs one		
		cycle		
DQ 10		1: Keep final values after the AC	0	
PC-16	Simple PLC running mode	drive runs one cycle	0	
		2: Repeat after the AC drive runs one		
	cycle			

* 0: Stop after the AC drive runs one cycle

The AC drive stops after running one cycle, and will not start up until receiving another command.

* 1: Keep final values after the AC drive runs one cycle

The AC drive keeps the final running frequency and direction after running one cycle.

* 2: Repeat after the AC drive runs one cycle

The AC drive automatically starts another cycle after running one cycle, and will not stop until receiving the stop command.

Simple PLC can be either the frequency source or V/F separated voltage source.

When simple PLC is used as the frequency source, whether parameter values of PC-00 to PC-15 are positive or negative determines the running direction. If the parameter values are negative, it indicates that the AC drive runs in reverse direction.

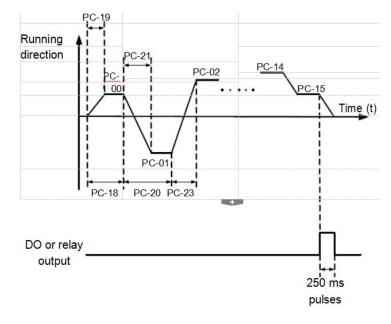


Figure 6-32 Simple PLC when used as frequency source

Function Code	Parameter Name	Setting Range	Default
		45	

		Unit's digit (Retentive upon power	
		failure)	
		0: No	
PC-17	Simple PLC retentive selection	1: Yes	0
		Ten's digit (Retentive upon stop)	
		0: No	
		1: Yes	

PLC retentive upon power failure indicates that the AC drive memorizes the PLC running moment and running frequency before power failure and will continue to run from the memorized moment after it is powered on again. If the unit's digit is set to 0, the AC drive restarts the PLC process after it is powered on again.

PLC retentive upon stop indicates that the AC drive records the PLC running moment and running frequency upon stop and will continue to run from the recorded moment after it starts up again. If the ten's digit is set to 0, the AC drive restarts the PLC process after it starts up again.

Function Code	Parameter Name	Setting Range	Default
PC-18	Running time of simple PLC reference 0	0.0-6553.5s (h)	0.0s (h)
PC-19	Acceleration/deceleration time of simple PLC reference 0	0 - 3	0
PC-20	Running time of simple PLC reference 1	0.0-6553.5s (h)	0.0s (h)
PC-21	Acceleration/deceleration time of simple PLC reference 1	0 - 3	0
PC-22	Running time of simple PLC reference 2	0.0-6553.5s (h)	0.0s (h)
PC-23	Acceleration/deceleration time of simple PLC reference 2	0 - 3	0
PC-24	Running time of simple PLC reference 3	0.0-6553.5s (h)	0.0s (h)
PC-25	Acceleration/deceleration time of simple PLC reference 3	0 - 3	0
PC-26	Running time of simple PLC reference 4	0.0-6553.5s (h)	0.0s (h)
PC-27	Acceleration/deceleration time of simple PLC reference 4	0 - 3	0
PC-28	Running time of simple PLC reference 5	0.0-6553.5s (h)	0.0s (h)
PC-29	Acceleration/deceleration time of simple PLC reference 5	0 - 3	0
PC-30	Running time of simple PLC reference 6	0.0-6553.5s (h)	0.0s (h)
PC-31	Acceleration/deceleration time of simple PLC reference 6	0 - 3	0
PC-32	Running time of simple PLC reference 7	0.0-6553.5s (h)	0.0s (h)
PC-33	Acceleration/deceleration time of simple PLC reference 7	0 - 3	0
PC-34	Running time of simple PLC reference 8	0.0-6553.5s (h)	0.0s (h)
PC-35	Acceleration/deceleration time of simple PLC reference 8	0 - 3	0

Function Code	Parameter Name	Setting Range	Default
	50	0	

PC-36	Running time of simple PLC reference 9	0.0-6553.5s (h)	0.0s (h)
PC-37	Acceleration/deceleration time of simple PLC reference 9	0 - 3	0
PC-38	Running time of simple PLC reference 10	0.0-6553.5s (h)	0.0s (h)
PC-39	Acceleration/deceleration time of simple PLC reference 10	0 - 3	0
PC-40	Running time of simple PLC reference 11	0.0-6553.5s (h)	0.0s (h)
PC-41	Acceleration/deceleration time of simple PLC reference 11	0 - 3	0
PC-42	Running time of simple PLC reference 12	0.0-6553.5s (h)	0.0s (h)
PC-43	Acceleration/deceleration time of simple PLC reference 12	0 - 3	0
PC-44	Running time of simple PLC reference 13	0.0-6553.5s (h)	0.0s (h)
PC-45	Acceleration/deceleration time of simple PLC reference 13	0 - 3	0
PC-46	Running time of simple PLC reference 14	0.0-6553.5s (h)	0.0s (h)
PC-47	Acceleration/deceleration time of simple PLC reference 14	0 - 3	0
PC-48	Running time of simple PLC reference 15	0.0-6553.5s (h)	0.0s (h)
PC-49	Acceleration/deceleration time of simple PLC reference 15	0 - 3	0
PC-50	Time unit of simple PLC running	0: s (second) 1: h (hour)	0
PC-51	Reference O source	0: Set by PC-00 1: VI 2: CI 3: KEY resistance range 4: Pulse setting 5: PID 6: Set by preset frequency (PO-08), modified via terminal UP/DOWN	0

It determines the setting channel of reference 0. You can perform convenient switchover between the setting channels. When multi-reference or simple PLC is used as frequency source, the switchover between two frequency sources can be realized easily.

Group PP: User Password

Function Code	Parameter Name	Setting Range	Default
PP-00	User password	0 - 65535	0

If it is set to any non-zero number, the password protection function is enabled. After a password has been set and taken effect, you must enter the correct password in order to enter the menu. If the entered password is incorrect you cannot view or modify parameters.

If PP-00 is set to 00000, the previously set user password is cleared, and the password protection function is disabled.

Function Code	Parameter Name	Setting Range	Default		
PP-01 Restore default settings		0: No operation			
		1: Restore factory settings except	0		
		motor parameters			
	Restore delault settings	2: Clear records	0		

* 1: Restore default settings except motor parameters

If PP-01 is set to 1, most function codes are restored to the default settings except motor parameters, frequency reference resolution (P0-22), fault records, accumulative running time (P7-09), accumulative power-on time (P7-13) and accumulative power consumption (P7-14).

* 2: Clear records

If PP-01 is set to 2, the fault records, accumulative running time (P7-09), accumulative power-on time (P7-13) and accumulative power consumption (P7-14) are cleared.

Group A5: Control Optimization Parameters

Function Code	Parameter Name	Setting Range	Default
A5-03	Random PWM depth	0: Random PWM invalid 1-10	0

The setting of random PWM depth can make the shrill motor noise softer and reduce the electromagnetic interference. If this parameter is set to 0, random PWM is invalid.

Function Code	Parameter Name	Setting Range	Default
A5-06	Undervoltage threshold	60. 0% - 140. 0%	100%

It is used to set the undervoltage threshold of Err09. The undervoltage threshold 100% of the AC drive of different voltage classes corresponds to different nominal values, as listed in the following table.

Table 6-11	Undervoltage	nominal	values	for	different	voltage	
------------	--------------	---------	--------	-----	-----------	---------	--

Voltage Class	Nominal Value of Undervoltage threshold
Single-phase 220 V	200 V
Three-phase 220 V	200 V
Three-phase 380 V	350 V

Function Code	Parameter Name	Setting Range	Default
	SFVC optimization mode selection	0: No optimization	
A5-07		1: Optimization mode 1	1
		2: Optimization mode 2	

* 1: Optimization mode 1

It is used when the requirement on torque control linearity is high.

* 2: Optimization mode 2

It is used for the requirement on speed stability is high.

3 Troubleshooting

3.1 Routine Repair and Maintenance of the KC500

3.1.1 Routine Maintenance

The influence of the ambient temperature, humidity, dust and vibration will cause the aging of the devices in the AC drive, which may cause potential faults or reduce the service life of the AC drive. Therefore, it is necessary to carry out routine and periodic maintenance.

1) Routine maintenance involves checking:

2) Whether the motor sounds abnormally during running

3) Whether the motor vibrates excessively during running

4) Whether the installation environment of the AC drive changes.

5) Whether the AC drive's cooling fan works normally

6) Whether the AC drive overheats Routine cleaning involves:

7) Keep the AC drive clean all the time.

8) Remove the dust, especially metal powder on the surface of the AC drive, to prevent the dust from entering the AC drive.

9) Clear the oil stain on the cooling fan of the AC drive.

3.1.2 Periodic Inspection

Perform periodic inspection in places where inspection is difficult.

Periodic inspection involves:

Check and clean the air duct periodically.

Check whether the screws become loose.

Check whether the AC drive is corroded.

Check whether the wiring terminals show signs of arcing;

Main circuit insulation test

Before measuring the insulating resistance with megameter (500 VDC megameter recommended), disconnect the main circuit from the AC drive. Prompt Do not use the insulating resistance meter to test the insulation of the control circuit. The high voltage test need not be performed again because it has been completed before delivery. 3. 1. 3 Replacement of Vulnerable Components

The vulnerable components of the AC drive are cooling fan and filter electrolytic capacitor.

Their service life is related to the operating environment and maintenance status. Generally, the service life is shown as follows:

Component	Servic e Life	Possible Damage Reason	Judging Criteria
Fan	2 to 3	Bearing worn	• Whether there is crack on the blade
	years	Blade aging	• Whether there is abnormal vibration noise upon startup
		Input power supply	• Whether there is liquid leakage.
		in poor quality	• Whether the safe valve has projected.
Electroly	4 to 5	High ambient	• Measure the static capacitance.
tic	vears	temperature	measure the static capacitance.
capacitor	years	Frequent load	 Measure the insulating resistance.
		jumping	measure the insurating resistance.
		Electrolytic aging	

3.1.4 Storage of the AC Drive

For storage of the AC drive, pay attention to the following two aspects:

1) Pack the AC drive with the original packing box provided by the agent .

2) Long-term storage degrades the electrolytic capacitor. Thus, the AC drive must be energized once every 2 years, each time lasting at least 5 hours. The input voltage must be increased slowly to the rated value with the regulator.

3.2 Warranty Agreement

1) Free warranty only applies to the AC drive itself.

2) the agent will provide 12-month warranty (starting from the leave-factory date as indicated on the barcode) for the failure or damage under normal use conditions. If the equipment has been used for over 12 months, reasonable repair expenses will be charged.

3) Reasonable repair expenses will be charged for the damages due to the following causes:

Improper operation without following the instructions

Fire, flood or abnormal voltage.

Using the AC drive for non-recommended function

Figure 9-1 Solutions to the faults of the KC500

display	Fault Name	Possible Causes	Solutions
	AC drive unit	1: The output circuit is grounded or short circuited.	1: Eliminate external faults.
		2: The connecting cable of the motor is too long.	2: Install a reactor or an output filter.
Err01		3: The IGBT overheats.	3: Check the air filter and the
Errol	protection	4: The internal connections become loose.	4: Connect all cables properly.
		5:The main control board is faulty.	
		6: The drive board is faulty.7: The AC drive IGBT is faulty.	
display	Fault Name	Possible Causes	Solutions
	Overcurrent during acceleration	Ground fault or short circuit exists in the output circuit. Control mode is SVC or FVC but motor auto-tuning is not	Check whether short-circuit occurs on the motor, motor cable or contactor. Set motor parameters according to motor nameplate and perform motor
		performed. Acceleration time is too short.	<u>auto-tuning.</u> Increase acceleration time.
Err02		The overcurrent stall prevention parameters are set improperly.	Ensure that current limit is enabled (P3-19 = 1). The setting of current limit level (P3-18) is too large. Adjust it between 120% and 150%. The setting of current limit gain (P3-20) is too small. Adjust it between 20 and 40.
		Customized torque boost or V/F	Adjust the customized torque boost
		curve is not appropriate. The spinning motor is started.	or V/F curve. Enable the catching a spinning motor function or start the motor after it stops.

		The AC drive suffers external interference.	View historical fault records. If the current value is far from the overcurrent level, find interference source. If external interference does not exist, it is the drive board or hall device problem.
		Ground fault or short circuit exists in the output circuit.	Check whether short-circuit occurs on the motor, motor cable or contactor.
		Control mode is SVC or FVC but motor auto-tuning is not performed.	Set the motor parameters according to the motor nameplate and perform motor auto-tuning.
		Acceleration time is too short.	Increase acceleration time.
Err03	Overcurrent during deceleration	The overcurrent stall prevention parameters are set improperly.	Ensure that current limit is enabled (P3-19 = 1). The setting of current limit level (P3-18) is too large. Adjust it between 120% and 150%. The setting of the current limit gain P3-20) is too small. Adjust it between 20 and 40.
		Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.
		The AC drive suffers external interference.	View historical fault records. If the current value is far from the overcurrent level, find interf- Erence source. If external interf- erence does not exist, it is the drive board or hall device problem.
display	Fault Name	Possible Causes	Solutions
		Ground fault or short circuit exists in the output circuit. Control mode is SVC or FVC but motor auto-tuning is not performed.	Check whether short-circuit occurs on the motor, motor cable or contactor. Set motor parameters according to motor nameplate and perform motor auto-tuning.
Err04	Overcurrent at constant speed	The overcurrent stall prevention parameters are set improperly. The AC drive power class is small.	Ensure that current limit is enabled (P3-19 = 1). The setting of current limit level (P3-18) is too large. Adjust it between 120% and 150%. The setting of current limit gain (PF3-20) is too small. Adjust it between 20 and 40. If output current exceeds rated motor current or rated output current of the AC drive during
		Smail.	stable running, replace a drive of larger power class.

		The AC drive suffers external interference.	View historical fault records. If the current value is far from the overcurrent level, find interf- erence source. If external interference does not exist, it is the drive board or hall device problem.
Err05	Overvoltage during accel- eration	Input voltage is too high. An external force drives motor	Adjust input voltage to normal range. Cancel the external force or
		during acceleration. The overvoltage stall prevention parameters are set improperly.	install a braking resistor. Ensure that the voltage limit function is enabled (P3-23 = 1). The setting of voltage limit (P3-22) is too large.Adjust it between 700 V and 770 V. The setting of frequency gain for voltage limit (P3-24) is too small. Adjust it between 30 and 50.
		Braking unit and braking resistor are not installed. Acceleration time is too short.	Install braking unit and braking resistor. Increase acceleration time.
Err06 during	Overvoltage during dece- leration	The overvoltage stall prevention parameters are set improperly.	Ensure that the voltage limit function is enabled (P3-23 = 1). The setting of voltage limit (P3-22) is too large. Adjust it between 700 V and 770 V. The setting of frequency gain for voltage limit (P3-24) is too small. Adjust it between 30 and 50.
		An external force drives motor during deceleration.	Cancel the external force or install braking resistor.

display	Fault Name	Possible Causes	Solutions
		Deceleration time is too short.	Increase deceleration time.
		Braking unit and braking resistor	Install braking unit and braking
		are not installed.	resistor.
			Ensure that the voltage limit
			function is enabled (P3-23 = 1).
			The setting of voltage limit (P3-22)
			is too large. Adjust it between 700
			V and 770 V.
			The setting of frequency gain for
Err07	Overvoltage at	parameters are set improperly.	voltage limit (P3-24) is too small.
LIIOI	constant speed		Adjust it between 30 and 50.
			The setting of frequency rise
			threshold during voltage limit
			(P3-26) is too small. Adjust it
			between 5Hz and 20 Hz.
		An external force drives motor	Cancel the external force or install
		during running.	a braking resistor

Err08	Pre-charge	Bus voltage fluctuates around	Contact the agent or .the agent
EIIUO	resistor	undervoltage threshold	contact the agent of the agent
	fault	continuously. Instantaneous power failure	Enable power dip ride through (P9-5
Err09		-	$ \neq 0$).
		occurs	\neq 0).
		The AC drive's input voltage is	Adjust the voltage to normal range.
	Undervoltage	not within the permissible range.	
		The bus voltage is abnormal.	Contact the agent or the agent.
		The rectifier bridge, the buffer	
		resistor, the drive board or the	Contact the agent or the agent.
		control board are abnormal.	
Eram 10			Reduce load or check motor and
Err10	Drive overload	occurs on motor.	mechanical conditions.
		The AC drive power class is small.	Replace a drive of larger power
		PO 01 (Motor overland protection	class.
		P9-01 (Motor overload protection	Set P9-01 correctly.
Err11	Motor overload	gain) is set improperly.	Reduce load or check motor and
		occurs on motor.	mechanical conditions.
			Eliminate faults in external
		Input phase loss occurs.	circuitry.
Err12	Power input	Drive board, lightning protection	
	phase loss	board, control board, or rectifier	
		bridge is abnormal.	
			Check resistance between motor
		Motor winding is damaged.	wires.Replace motor is winding is
		0 0	damaged.
			Check for wiring orrors and ansure
	One drive	The cable connecting the AC drive	the output cable is connected
Err13	output phase	and the motor is abnormal.	properly.
	loss	The AC drive's three-phase	
		outputs are unbalanced when the	-
		motor is running.	winding is normal.
		motor is running.	
		The drive board or the IGBT is	Contact the egent on the egent
			Contact the agent or the agent.
display	Fault Name	The drive board or the IGBT is	Contact the agent or the agent. Solutions
display	Fault Name	The drive board or the IGBT is abnormal.	Solutions
display	Fault Name	The drive board or the IGBT is abnormal. Possible Causes	Solutions
display	Fault Name	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too	Solutions
display Err14		The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high.	Solutions Lower the ambient temperature.
		The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan.
		The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan.
		The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally
		The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical
	IGBT overheat	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged. External fault signal is input via	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical
Err14	IGBT overheat	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical condition allows restart (F8-18) and
	IGBT overheat External equipment	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged. External fault signal is input via X.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical condition allows restart (F8-18) and reset the operation.
Err14	IGBT overheat	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged. External fault signal is input via X.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical condition allows restart (F8-18) and reset the operation. Confirm that the virtual I/C
Err14	IGBT overheat External equipment	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged. External fault signal is input via X.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical condition allows restart (F8-18) and reset the operation. Confirm that the virtual I/C parameters in group A1 are set
Err14	IGBT overheat External equipment fault	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged. External fault signal is input via X. External fault signal is input via virtual I/O.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical condition allows restart (F8-18) and reset the operation. Confirm that the virtual I/C parameters in group A1 are set correctly and reset the operation.
Err14	IGBT overheat External equipment fault	The drive board or the IGBT is abnormal. Possible Causes The ambient temperature is too high. The ventilation is clogged. The fan is damaged. Thermally sensitive resistor of IGBT is damaged. The inverter IGBT is damaged. External fault signal is input via X.	Solutions Lower the ambient temperature. Clean the ventilation. Replace the cooling fan. Replace the damaged thermally sensitive resistor. Replace the inverter IGBT. Confirm that the mechanical condition allows restart (F8-18) and reset the operation. Confirm that the virtual I/C parameters in group A1 are set correctly and reset the operation.

	1		
		-	Set PO-28 of extension communication card correctly.
		Communication parameters in group	Set communication parameters in
		Fd are set improperly.	
		After all the preceding checkings	are done but the fault still exists,
		restore the default settings.	
		Drive board and power supply are	Replace drive board or power supply
	Contactor	abnormal.	board.
Err17	fault	Contactor is abnormal.	Replace contactor.
		The lightning protection board is	Replace the lightning protection
		abnormal.	board.
Err18	Current dete-	The hall is abnormal.	Replace the hall .
EIIIO	Ction fault	The drive board is abnormal.	Replace the drive board.
Err23	Short circuit to ground	Motor is short circuited to the ground.	Replace cable or motor.
Err26	Accumulative running time reached	Accumulative running time reaches the setting value.	Clear the record through parameter initialization.
			Reduce load or check motor and
Err40	Quick current limit	occurs on motor.	mechanical conditions.
ETT40		The AC drive power class is small.	Replace a drive of larger power class.